Skip to main content
Log in

Laccase Validation as Pretreatment of Agave Waste Prior to Saccharification: Free and Immobilized in Superparamagnetic Nanoparticles Enzyme Preparations

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In the present study free and immobilized on magnetic nanoparticles coated with chitosan (C-MNP) laccase was applied to validate their effects on agave biomass waste as pretreatment before enzymatic saccharification. C-MNP were prepared by one step coprecipitation. Trametes versicolor laccase was immobilized via glutaraldehyde reaction. Fourier-Transformed Infrared spectra, magnetization measurements, and high resolution transmission electron microscope were performed to characterize bio-nanocomposite. Operational properties of free and immobilized laccase were evaluated spectrophotometrically using catechol as substrate. Effects of free and immobilized laccase on Agave atrovirens biomass waste, pretreated previously by autoclaving, were valued by glucose release after cellulase catalyzed hydrolysis. Immobilization technique yielded 82% of protein immobilization, and 89% of initial activity were retained. Immobilized enzyme showed better thermal and storage stability than free enzyme; Km value increased only at 1.25 times, and its activity behavior as pH and temperature function was maintained. Immobilized laccase retained 50% of its activity after 5 cycles. Free laccase applied for 12 h at 3 U (solid vegetal material g−1) in cactus Agave atrovirens biomass led to raise the yield of enzymatic hydrolysis (with Celluclast at 15 U g−1) at 11%, while immobilized laccase led to decrease yield at 16%. It was demonstrated that the interaction between bio-nanocomposite and lignocellulosic material probably hindered magnetic separation of immobilized enzyme. Thus, free laccase may be applied as agave biomass treatment before enzymatic hydrolysis. Immobilized enzyme may be applied for other biotechnological processes where magnetic separation may be useful for development of new technologies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang, Y., Rochefort, D.: Activity, conformation and thermal stability of laccase and glucose oxidase in poly(ethyleneimine) microcapsules for immobilization in paper. Process Biochem. 46, 993–1000 (2011)

    Article  Google Scholar 

  2. Gutiérrez, A., Rencoret, J., Cadena, E.M., Rico, A., Barth, D., del Río, J.C., Martínez, Á.T.: Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Bioresour. Technol. 119, 114–122 (2012)

    Article  Google Scholar 

  3. Netto, C.G.C.M., Toma, H.E., Andrade, L.H.: Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J. Mol. Catal. B Enzym. 85–86, 71–92 (2013)

    Article  Google Scholar 

  4. Tavares, A.P.M., Rodríguez, O., Fernández-Fernández, M., Domínguez, A., Moldes, D., Sanromán, M.A., Macedo, E.A.: Immobilization of laccase on modified silica: stabilization, thermal inactivation and kinetic behaviour in 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid. Bioresour. Technol. 131, 405–412 (2013)

    Article  Google Scholar 

  5. Bourbonnais, R., Paice, M.: Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Appl. Microbiol. Biotechnol. 36, 823–827 (1992)

    Article  Google Scholar 

  6. Fernández-Fernández, M., Sanromán, M.Á., Moldes, D.: Recent developments and applications of immobilized laccase. Biotechnol. Adv. 31, 1808–1825 (2013)

    Article  Google Scholar 

  7. Rodríguez Couto, S., Herrera, J.L.T.: Industrial and biotechnological applications of laccases: a review. Biotechnol. Adv. 24, 500–513 (2006)

    Article  Google Scholar 

  8. Rotková, J., Šuláková, R., Korecká, L., Zdražilová, P., Jandová, M., Lenfeld, J., Horák, D., Bílková, Z.: Laccase immobilized on magnetic carriers for biotechnology applications. J. Magn. Magn. Mater. 321, 1335–1340 (2009)

    Article  Google Scholar 

  9. Demarche, P., Patel, H., Gupte, S.: Harnessing the power of enzymes for enviromental stewardship. Biotechnol. Adv. 30, 933–953 (2012)

    Article  Google Scholar 

  10. Thakur, S., Patel, H., Gupte, S., Gupte, A.: Laccases: the biocatalyst with industrial and biotechnological applications. In: Satyanarayana, T., Johri, B.N. (eds.) Microorganisms in sustainable agriculture and biotechnology, pp. 309–342. Springer, Netherlands (2012)

    Chapter  Google Scholar 

  11. Camarero, S., Ibarra, D., Martínez, Á.T., Romero, J., Gutiérrez, A., del Río, J.C.: Paper pulp delignification using laccase and natural mediators. Enzym. Microb. Technol. 40, 1264–1271 (2007)

    Article  Google Scholar 

  12. Feng, C., Zeng, G., Huang, D., Hu, S., Zhao, M., Lai, C., Huang, C., Wei, Z., Li, N.: Effect of ligninolytic enzymes on lignin degradation and carbon utilization during lignocellulosic waste composting. Process Biochem. 46, 1515–1520 (2011)

    Article  Google Scholar 

  13. Moilanen, U., Kellock, M., Galkin, S., Viikari, L.: The laccase-catalyzed modification of lignin for enzymatic hydrolysis. Enzym. Microb. Technol. 49, 492–498 (2011)

    Article  Google Scholar 

  14. Yu, Z., Jameel, H., Chang, H.M., Park, S.: The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresour. Technol. 102, 9083–9089 (2011)

    Article  Google Scholar 

  15. Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)

    Article  Google Scholar 

  16. Barr, D.P., Aust, S.D.: Mechanisms white rot fungi use to degrade pollutants. Environ. Sci. Technol. 28, 78A–87A (1994)

    Article  Google Scholar 

  17. Datta, S., Christena, L.R., Rajaram, Y.: Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3, 1–9 (2013)

    Article  Google Scholar 

  18. de Moraes Rocha, G.J., Nascimento, V.M., da Silva, V.F.N.: Enzymatic bioremediation of effluent from sugarcane bagasse soda delignification process. Waste Biomass Valoriz. 5, 919–929 (2014)

    Article  Google Scholar 

  19. Lu, A.H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007)

    Article  Google Scholar 

  20. Sánchez-Ramírez, J., Iliná, A., Segura-Ceniceros, E.P., Aguilar, C.N., Medina-Morales, M.A., Martínez-Hernández, J.L.: Influencia de pretratamientos en la bioconversión enzimática de fibras de pencas de Agave. Rev. Facul. Nac. Agron. Medellín. 67, 915–916 (2014)

    Google Scholar 

  21. Zhao, F., Zhang, B., Feng, L.: Preparation and magnetic properties of magnetite nanoparticles. Mater. Lett. 68, 112–114 (2012)

    Article  Google Scholar 

  22. Bayramoglu, G., Yilmaz, M., Yakup Arica, M.: Preparation and characterization of epoxy-functionalized magnetic chitosan beads: laccase immobilized for degradation of reactive dyes. Bioprocess Biosyst. Eng. 33, 439–448 (2010)

    Article  Google Scholar 

  23. Fang, H., Huang, J., Ding, L., Li, M., Chen, Z.: Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J. Wuhan Univ. Technol. Mater. Sci. Ed. 24, 42–47 (2009)

    Article  Google Scholar 

  24. Huan, W., Yang, Y., Wu, B., Yuan, H., Zhang, Y., Liu, X.: Degradation of 2,4-DCP by the Immobilized laccase on the carrier of Fe3O4@SiO2-NH2. Chin. J. Chem. 30, 2849–2860 (2012)

    Article  Google Scholar 

  25. Jiang, D.S., Long, S.Y., Huang, J., Xiao, H.Y., Zhou, J.Y.: Immobilization of Pycnoporus sanguineus laccase on magnetic chitosan microspheres. Biochem. Eng. J. 25, 15–23 (2005)

    Article  Google Scholar 

  26. Kalkan, N.A., Aksoy, S., Aksoy, E.A., Hasirci, N.: Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J. Appl. Polym. Sci. 123, 707–716 (2012)

    Article  Google Scholar 

  27. Wang, F., Guo, C., Yang, L.R., Liu, C.Z.: Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance. Bioresour. Technol. 101, 8931–8935 (2010)

    Article  Google Scholar 

  28. Osuna, Y., Gregorio-Jauregui, K.M., Gaona, L.G., De la Garza, R.I.M., Ilina, A., Barriga, C.E.D., Saade, H., Lopez, R.G.: Chitosan-coated magnetic nanoparticles with low chitosan content prepared in one-step. J. Nanomater. (2012). doi:10.1155/2012/327562

    Google Scholar 

  29. Bradford, M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  Google Scholar 

  30. Kaiser, E., Colescott, R.L., Bossinger, C.D., Cook, P.I.: Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal. Biochem. 34, 595–598 (1970)

    Article  Google Scholar 

  31. Hu, X., Zhao, X., Hwang, H.M.: Comparative study of immobilized Trametes versicolor laccase on nanoparticles and kaolinite. Chemosphere 66, 1618–1626 (2007)

    Article  Google Scholar 

  32. Wang, F., Guo, C., Liu, H.Z., Liu, C.Z.: Immobilization of Pycnoporus sanguineus laccase by metal affinity adsorption on magnetic chelator particles. J. Chem. Technol. Biotechnol. 83, 97–104 (2008)

    Article  Google Scholar 

  33. Sánchez-Ramírez, J., Martínez-Hernández, J.L., Segura-Ceniceros, E.P., Contreras-Esquivel, J.C., Medina-Morales, M.A., Aguilar, C.N., Iliná, A.: Inmovilización de enzimas lignocelulolíticas en nanopartículas magnéticas. Quim. Nova 37, 504–512 (2014)

    Article  Google Scholar 

  34. Li, A., Antizar-Ladislao, B., Khraisheh, M.: Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess Biosyst. Eng. 30, 189–196 (2007)

    Article  Google Scholar 

  35. Wu, Y., Wang, Y., Luo, G., Dai, Y.: In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour. Technol. 100, 3459–3464 (2009)

    Article  Google Scholar 

  36. Gregorio-Jauregui, K., Carrizalez-Alvarez, S., Rivera-Salinas, J., Saade, H., Martinez, J., López, R., Segura, E., Ilyina, A.: Extraction and immobilization of SA-α-2,6-gal receptors on magnetic nanoparticles to study receptor stability and interaction with Sambucus nigra lectin. Appl. Biochem. Biotechnol. 172, 3721–3735 (2014)

    Article  Google Scholar 

  37. Gregorio-Jauregui, K.M., Pineda, M.G., Rivera-Salinas, J.E., Hurtado, G., Saade, H., Martinez, J.L., Ilyina, A., López, R.G.: One-step method for preparation of magnetic nanoparticles coated with chitosan. J. Nanomater. (2012). doi:10.1155/2012/813958

    Google Scholar 

  38. Sánchez-Ramírez, J., Martínez-Hernández, J.L., Segura-Ceniceros, P., López, G., Saade, H., Medina-Morales, M.A., Ramos-González, R., Aguilar, C.N., Ilyina, A.: Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis. Bioprocess Biosyst. Eng. (2016). doi:10.1007/s00449-016-1670-1

    Google Scholar 

  39. Arroyo, M.: Inmovilización de enzimas. Fundamentos, métodos y aplicaciones. Ars Pharm. 39, 23–39 (1998)

    Google Scholar 

  40. Jordan, J., Kumar, C.S.S.R., Theegala, C.: Preparation and characterization of cellulase-bound magnetite nanoparticles. J. Mol. Catal. B Enzym. 68, 139–146 (2011)

    Article  Google Scholar 

  41. Liu, Y., Zeng, Z., Zeng, G., Tang, L., Pang, Y., Li, Z., Liu, C., Lei, X., Wu, M., Ren, P., Liu, Z., Chen, M., Xie, G.: Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresour. Technol. 115, 21–26 (2012)

    Article  Google Scholar 

  42. Ben Hamissa, A.M., Seffen, M., Aliakbarian, B., Casazza, A.A., Perego, P., Converti, A.: Phenolics extraction from Agave americana (L.) leaves using high-temperature, high-pressure reactor. Food Bioprod. Process. 90, 17–21 (2012)

    Article  Google Scholar 

  43. Medina Morales, M.A.: Hidrólisis enzimática de fibras de hoja de Agave. Ph.D. Thesis, Universidad Autónoma de Coahuila (2012)

  44. Nava-Cruz, N., Medina-Morales, M.A., Martínez-Hernández, J.L., Rodríguez-Herrera, R., Aguilar, C.N.: Agave biotechnology: an overview. Crit. Rev. Biotechnol. 35, 546–559 (2015)

    Article  Google Scholar 

  45. Rico, A., Rencoret, J., del Río, J.C., Martínez, A.T., Gutiérrez, A.: Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol. Biofuels 7, 6–20 (2014)

    Article  Google Scholar 

  46. Cañas, A.I., Camarero, S.: Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol. Adv. 28, 694–705 (2010)

    Article  Google Scholar 

  47. Palonen, H., Viikari, L.: Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol. Bioeng. 86, 550–557 (2004)

    Article  Google Scholar 

  48. Jørgensen, H., Kristensen, J.B., Felby, C.: Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod. Biorefin. 1, 119–134 (2007)

    Article  Google Scholar 

  49. Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J.: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 10, 4851–4861 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would thank the Mexican Council of Science and Technology (CONACYT) for its financial support to carry out this investigation project, Grant No. 213844 (PDCPN2013-01 CONACYT-Mexico), as well as for the financial support under the program “Cátedras CONACYT - 2015” (Project No. 729).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Ilyina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Ramírez, J., Martínez-Hernández, J.L., López-Campos, R.G. et al. Laccase Validation as Pretreatment of Agave Waste Prior to Saccharification: Free and Immobilized in Superparamagnetic Nanoparticles Enzyme Preparations. Waste Biomass Valor 9, 223–234 (2018). https://doi.org/10.1007/s12649-016-9774-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9774-z

Keywords

Navigation