Skip to main content

Advertisement

Log in

Enhanced biosurfactant production by Bacillus subtilis SPB1 using developed fed-batch fermentation: effects of glucose levels and feeding systems

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Biosurfactants stand for highly useful and promising compounds. They basically serve for a variety of applications in multiple industries and aspects of human life. Therefore, it is highly required to improve their production yield especially through the development of new and more efficient fermentation processes. In this aim, batch and fed-batch were studied and compared in terms of their effective biosurfactant production by Bacillus subtilis SPB1. Experiments of fed-batch fermentations were carried out through three different glucose feeding strategies, namely the pulsed, the constant Donespeed and the exponential feeding. The comparison between different fermentation processes revealed that fed-batch process proved to be a more efficient cultivation strategy than the batch process in terms of cell biomass, biosurfactant production and productivity. Among the three different feeding strategies, the exponential feeding process achieved the highest fermentation results of final biosurfactant concentration. The latter increased more than twofolds compared to batch fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The data sets supporting the conclusion of this article are included in the article.

References

  1. Fooladi T, Abdeshahian P, Moazami N, Soudi MR, Kadier A, Yusoff WMW, Hamid A (2018) Enhanced biosurfactant production by Bacillus pumilus 2IR in fed-batch fermentation using 5-L bioreactor. Iran J Sci Technol Trans A: Sci 42:1111–1123

    Article  Google Scholar 

  2. Cruz JM, Hughes C, Quilty B, Montagnolli RN, Bidoia E (2018) Agricultural feedstock supplemented with manganese for biosurfactant production by Bacillus subtilis. Waste Biomass Valoriz 9:613–618

    Article  CAS  Google Scholar 

  3. Kumar PS, Ngueagni P (2021) A review on new aspects of lipopeptide biosurfactant: types, production, properties and its application in the bioremediation process. J Hazard Mater 407:124827

    Article  PubMed  Google Scholar 

  4. Naughton P, Marchant R, Naughton V, Banat I (2019) Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol 127:12–28

    Article  CAS  PubMed  Google Scholar 

  5. Patel S, Homaei A, Patil S, Daverey A (2019) Microbial biosurfactants for oil spill remediation: pitfalls and potentials. Appl Microbiol Biotechnol 103:27–37

    Article  CAS  PubMed  Google Scholar 

  6. Liu K, Sun Y, Cao M, Wang J, Lu JR, Xu H (2020) Rational design, properties, and applications of biosurfactants: a short review of recent advances. Cur Opin Col Inter Sci 45:57–67

    Article  CAS  Google Scholar 

  7. Xu N, Liu S, Xu L, Zhou J, Xin F, Zhang W, Qian X, Li M, Dong W, Jiang M (2020) Enhanced rhamnolipids production using a novel bioreactor system based on integrated foam-control and repeated fed-batch fermentation strategy. Biotechnol Biof 13:1–10

    Google Scholar 

  8. Sharma S, Verma R, Dhull S, Maiti SK, Pandey L (2021) Biodegradation of waste cooking oil and simultaneous production of rhamnolipid biosurfactant by Pseudomonas aeruginosa P7815 in batch and fed-batch bioreactor. Bioprocess Biosys Eng 45(2):309-319

    Google Scholar 

  9. Chenikher S, Guez JS, Coutte F, Pekpe M, Jacques P, Cassar J (2010) Control of the specific growth rate of Bacillus subtilis for the production of biosurfactant lipopeptides in bioreactors with foam overflow. Process Biochem 45:1800–1807

    Article  CAS  Google Scholar 

  10. Ghomi AM, Fazaelipoor MH, Jafari SA, Ataei SA (2012) Comparison between batch and fed-batch production of rhamnolipid by Pseudomonas aeruginosa. Iran J Biotechnol 10(4):263–269

    Google Scholar 

  11. Bouassida M, Ghazala I, Ellouze-Chaabouni S, Ghribi D (2018) Improved biosurfactant production by Bacillus subtilis SPB1 mutant obtained by random mutagenesis and its application in enhanced oil recovery in a sand system. J Microbiol Biotechnol 28:95–104

    Article  CAS  PubMed  Google Scholar 

  12. Hu F, Liu Y, Li S (2019) Rational strain improvement for surfactin production: enhancing the yield and generating novel structures. Microbial Cell Fact 18:1–13

    Article  Google Scholar 

  13. Mnif I, Bouallegue A, Mekki S, Ghribi D (2021) Valorization of date juice by the production of lipopeptide biosurfactants by a Bacillus mojavensis BI2 strain: bioprocess optimization by response surface methodology and study of surface activities. Biop and Biosyst Eng 44:2315–2330

    Article  CAS  Google Scholar 

  14. Mnif I, Bouallegue A, Bouassida M, Ghribi D (2022) Surface properties and heavy metals chelation of lipopeptides biosurfactants produced from date flour by Bacillus subtilis ZNI5: optimized production for application in bioremediation. Biop Biosyst Eng 45:31–44

    Article  CAS  Google Scholar 

  15. Singh P, Patil Y, Rale V (2019) Biosurfactant production: emerging trends and promising strategies. J Appl Microbiol 126:2–13

    Article  CAS  PubMed  Google Scholar 

  16. Fenibo EO, Douglas SI, Stanley H (2019) A review on microbial surfactants: production, classifications, properties and characterization. J Adv Microbiol 18:1–22

    Article  Google Scholar 

  17. Hajfarajollah H, Mokhtarani B, Tohidi A, Bazsefidpar S, Noghabi K (2019) Overproduction of lipopeptide biosurfactant by Aneurinibacillus thermoaerophilus HAK01 in various fed-batch modes under thermophilic conditions. RSC Adv 9:30419–30427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oh JS, Kim B-G, Park T (2002) Importance of specific growth rate for subtilisin expression in fed-batch cultivation of Bacillus subtilis spoIIG mutant. Enz Microbial Technol 30:747–751

    Article  Google Scholar 

  19. Sivapathasekaran C, Sen R (2013) Performance evaluation of batch and unsteady state fed-batch reactor operations for the production of a marine microbial surfactant. J Chem Technol Biotechnol 88:719–726

    Article  CAS  Google Scholar 

  20. Eslami P, Hajfarajollah H, Bazsefidpar S (2020) Recent advancements in the production of rhamnolipid biosurfactants by Pseudomonas aeruginosa. RSC Adv 10:34014–34032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sari C, Hertadi R, Gozan M, Roslan A (2019) Factors Affecting the Production of Biosurfactants and their Applications in Enhanced Oil Recovery (EOR). A Review. IOP Conference Series: Earth and Environmental Science, p. 012048, IOP Publishing.

  22. Kronemberger FA, Borges CP, Freire D (2010) Fed-batch biosurfactant production in a bioreactor. Int Rev Chem Eng 2:513–518

    Google Scholar 

  23. Zambry NS, Rusly NS, Awang MS, Noh NAM, Yahya A (2021) Production of lipopeptide biosurfactant in batch and fed-batch Streptomyces sp. PBD-410L cultures growing on palm oil. Bioprocess Biosys Eng 44(7):1577-1592

    Article  Google Scholar 

  24. Yao S, Zhao S, Lu Z, Gao Y, Lv F, Bie X (2015) Control of agitation and aeration rates in the production of surfactin in foam overflowing fed-batch culture with industrial fermentation. Revista Argent Microbiol 47:344–349

    Article  Google Scholar 

  25. Zhu L, Yang X, Xue C, Chen Y, Qu L, Lu W (2012) Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process. Biores Technol 117:208–213

    Article  CAS  Google Scholar 

  26. Mnif I, Grau-Campistany A, Coronel-León J, Hammami I, Triki MA, Manresa A, Ghribi D (2016) Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ Sci Pol Res 23:6690–6699

    Article  CAS  Google Scholar 

  27. Ghribi D, Abdelkefi-Mesrati L, Mnif I, Kammoun R, Ayadi I, Saadaoui I, Maktouf S, Chaabouni-Ellouze S (2012) Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation. J Biomed Biotechnol. 2012:373682

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mnif I, Hammami I, Triki MA, Azabou MC, Ellouze-Chaabouni S, Ghribi D (2015) Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani. Environ Sci Pol Res 22:18137–18147

    Article  CAS  Google Scholar 

  29. Ghribi D, Elleuch M, Abdelkefi-Mesrati L, Boukadi H, Ellouze-Chaabouni S (2012) Histopathological effects of Bacillus subtilis SPB1 biosurfactant in the midgut of Ephestia kuehniella (Lepidoptera: Pyralidae) and improvement of its insecticidal efficiency. J Plant Dis Protect 119:24–29

    Article  CAS  Google Scholar 

  30. Ghribi D, Elleuch M, Abdelkefi L, Ellouze-Chaabouni S (2012) Evaluation of larvicidal potency of Bacillus subtilis SPB1 biosurfactant against Ephestia kuehniella (Lepidoptera: Pyralidae) larvae and influence of abiotic factors on its insecticidal activity. J Stor Prod Res 48:68–72

    Article  CAS  Google Scholar 

  31. Mnif I, Elleuch M, Chaabouni SE, Ghribi D (2013) Bacillus subtilis SPB1 biosurfactant: production optimization and insecticidal activity against the carob moth Ectomyelois ceratoniae. Crop Protect 50:66–72

    Article  CAS  Google Scholar 

  32. Zouari R, Moalla-Rekik D, Sahnoun Z, Rebai T, Ellouze-Chaabouni S, Ghribi-Aydi D (2016) Evaluation of dermal wound healing and in vitro antioxidant efficiency of Bacillus subtilis SPB1 biosurfactant. Biomed Pharmacother 84:878–891

    Article  CAS  PubMed  Google Scholar 

  33. Zouari R, Ben Abdallah-Kolsi R, Hamden K, Feki AE, Chaabouni K, Makni-Ayadi F, Sallemi F, Ellouze-Chaabouni S, Ghribi-Aydi D (2015) Assessment of the antidiabetic and antilipidemic properties of bacillus subtilis spb1 biosurfactant in alloxan-induced diabetic rats. Pep Sci 104:764–774

    Article  CAS  Google Scholar 

  34. Zouari R, Hamden K, El Feki A, Chaabouni K, Makni-Ayadi F, Sallemi F, Ellouze-Chaabouni S, Ghribi-Aydi D (2017) Evaluation of Bacillus subtilis SPB1 biosurfactant effects on hyperglycemia, angiotensin I-converting enzyme (ACE) activity and kidney function in rats fed on high-fat–high-fructose diet. Arch Physiol Biochem 123:112–120

    Article  CAS  PubMed  Google Scholar 

  35. Zouari R, Hamden K, El Feki A, Chaabouni K, Makni-Ayadi F, Kallel C, Sallemi F, Ellouze-Chaabouni S, Ghribi-Aydi D (2016) Protective and curative effects of Bacillus subtilis SPB1 biosurfactant on high-fat-high-fructose diet induced hyperlipidemia, hypertriglyceridemia and deterioration of liver function in rats. Biomed Pharmacother 84:323–329

    Article  CAS  PubMed  Google Scholar 

  36. Sahnoun R, Mnif I, Fetoui H, Gdoura R, Chaabouni K, Makni-Ayadi F, Kallel C, Ellouze-Chaabouni S, Ghribi D (2014) Evaluation of Bacillus subtilis SPB1 lipopeptide biosurfactant toxicity towards mice. Int J Pept Res Therapeut 20:333–340

    Article  CAS  Google Scholar 

  37. Mnif I, Sahnoun R, Ellouze-Chaabouni S, Ghribi D (2014) Evaluation of B. subtilis SPB1 biosurfactants’ potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design. Environ Sci Pol Res 21:851–861

    Article  CAS  Google Scholar 

  38. Mnif I, Besbes S, Ellouze R, Ellouze-Chaabouni S, Ghribi D (2012) Improvement of bread quality and bread shelf-life by Bacillus subtilis biosurfactant addition. Food Sci Biotechnol 21:1105–1112

    Article  CAS  Google Scholar 

  39. Mnif I, Ghribi D (2015) Microbial derived surface active compounds: properties and screening concept. World J Microbiol Biotechnol 31:1001–1020

    Article  CAS  PubMed  Google Scholar 

  40. Mnif I, Fendri R, Ghribi D (2015) Malachite green bioremoval by a newly isolated strain citrobacter sedlakii RI11; enhancement of the treatment by biosurfactant addition. Water Sci Technol 72:1283–1293

    Article  CAS  PubMed  Google Scholar 

  41. Mnif I, Fendri R, Ghribi D (2015) Biosorption of congo red from aqueous solution by Bacillus weihenstephanensis RI12; effect of SPB1 biosurfactant addition on biodecolorization potency. Water Sci Technol 72:865–874

    Article  CAS  PubMed  Google Scholar 

  42. Mnif I, Maktouf S, Fendri R, Kriaa M, Ellouze S, Ghribi D (2016) Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition. Environ Sci Pol Res 23:1742–1754

    Article  CAS  Google Scholar 

  43. Zouari R, Besbes S, Ellouze-Chaabouni S, Ghribi-Aydi D (2016) Cookies from composite wheat–sesame peels flours: dough quality and effect of Bacillus subtilis SPB1 biosurfactant addition. Food Chem 194:758–769

    Article  CAS  PubMed  Google Scholar 

  44. Mnif I, Besbes S, Ellouze-Ghorbel R, Ellouze-Chaabouni S, Ghribi D (2013) Improvement of bread dough quality by Bacillus subtilis SPB1 biosurfactant addition: optimized extraction using response surface methodology. J Sci Food Agricul 93:3055–3064

    Article  CAS  Google Scholar 

  45. Bouassida M, Fourati N, Ghazala I, Ellouze-Chaabouni S, Ghribi D (2018) Potential application of Bacillus subtilis SPB1 biosurfactants in laundry detergent formulations: compatibility study with detergent ingredients and washing performance. Eng Life Sci 18:70–77

    Article  CAS  PubMed  Google Scholar 

  46. Bouassida M, Fourati N, Krichen F, Zouari R, Ellouz-Chaabouni S, Ghribi D (2017) Potential application of Bacillus subtilis SPB1 lipopeptides in toothpaste formulation. J Adv Res 8:425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ghribi D, Ellouze-Chaabouni S (2011) Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol Res Int. 2011:653654

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mnif I, Ellouze-Chaabouni S, Ghribi D (2013) Economic production of Bacillus subtilis SPB1 biosurfactant using local agro-industrial wastes and its application in enhancing solubility of diesel. J Chem Technol Biotechnol 88:779–787

    Article  CAS  Google Scholar 

  49. Zouari R, Ellouze-Chaabouni S, Ghribi-Aydi D (2014) Optimization of Bacillus subtilis SPB1 biosurfactant production under solid-state fermentation using by-products of a traditional olive mill factory. Achiev Life Sci 8:162–169

    Google Scholar 

  50. Zouari R, Ellouze-Chaabouni S, Ghribi D (2015) Use of butter milk and poultry-transforming wastes for enhanced production of bacillus subtilis spb1 biosurfactant in submerged fermentation. J Microbiol Biotechnol Food Sci 4(5):462–466

    Article  Google Scholar 

  51. Ghribi D, Mnif I, Boukedi H, Kammoun R, Ellouze-Chaabouni S (2011) Statistical optimization of low-cost medium for economical production of Bacillus subtilis biosurfactant, a biocontrol agent for the olive moth Prays oleae. Afr J Microbiol Res 5:4927–4936

    Google Scholar 

  52. Mnif I, Chaabouni-Ellouze S, Ghribi D (2012) Optimization of the nutritional parameters for enhanced production of B. subtilis SPB1 biosurfactant in submerged culture using response surface methodology. Biotechnol Res Int.

  53. Amin G, Al-Zahrani O (2014) A novel approach for surfactin production by locally isolated Bacillus subtilis with commercial potentials. International Conference on Advances in Bio-Informatics, Bio-Technology and Environmental Engineering - ABBE

  54. Mnif I, Rajhi H, Bouallegue A, Trabelsi N, Ghribi D (2022) Characterization of lipopeptides biosurfactants produced by a newly isolated strain Bacillus subtilis ZNI5: potential environmental application. J Polym Environ 30:2378–2391

    Article  CAS  Google Scholar 

  55. Eswari J (2020) Production of rhamnolipid biosurfactant from fed batch culture by Pseudomonas aeruginosa using multiple substrates. Cur Nutrit Food Sci 16:928–933

    Article  CAS  Google Scholar 

  56. Bazsefidpar S, Mokhtarani B, Panahi R, Hajfarajollah H (2019) Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control. Biodegrad 30:59–69

    Article  CAS  Google Scholar 

  57. He N, Wu T, Jiang J, Long X, Shao B, Meng Q (2017) Toward high-efficiency production of biosurfactant rhamnolipids using sequential fed-batch fermentation based on a fill-and-draw strategy. Col Surf B: Biointerf 157:317–324

    Article  CAS  Google Scholar 

  58. Heyd M, Franzreb M, Berensmeier S (2011) Continuous rhamnolipid production with integrated product removal by foam fractionation and magnetic separation of immobilized Pseudomonas aeruginosa. Biotechnol Progress 27:706–716

    Article  CAS  Google Scholar 

  59. Chen S-Y, Wei Y-H, Chang J (2007) Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Appl Microbiol Biotechnol 76:67–74

    Article  CAS  PubMed  Google Scholar 

  60. Qu L, Ren L-J, Sun G-N, Ji X-J, Nie Z-K, Huang H (2013) Batch, fed-batch and repeated fed-batch fermentation processes of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid. Biopr Biosyst Eng 36:1905–1912

    Article  CAS  Google Scholar 

  61. Mozumder MSI, De Wever H, Volcke EI, Garcia-Gonzalez L (2014) A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production. Process Biochem 49:365–373

    Article  CAS  Google Scholar 

  62. Willenbacher J, Yeremchuk W, Mohr T, Syldatk C, Hausmann R (2015) Enhancement of surfactin yield by improving the medium composition and fermentation process. AMB Express 5:1–9

    Article  Google Scholar 

  63. Jin H, Li K, Niu Y, Guo M, Hu C, Chen S, Huang F (2015) Continuous enhancement of iturin a production by Bacillus subtilis with a stepwise two-stage glucose feeding strategy. BMC Biotechnol 15:53

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Tunisian Ministry of Higher Education, Scientific Research and Technology. It is part of a research project on Biosurfactant Production, Characterization and Application.

Funding

Funding for this research work was granted by the Ministry of Higher Education and Research of Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

All authors directly participated in the planning, execution, or analysis of this study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ines Mnif.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

All authors read the final manuscript and approved its submission to Bioprocess and Biosystems Engineering.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouassida, M., Mnif, I. & Ghribi, D. Enhanced biosurfactant production by Bacillus subtilis SPB1 using developed fed-batch fermentation: effects of glucose levels and feeding systems. Bioprocess Biosyst Eng 46, 555–563 (2023). https://doi.org/10.1007/s00449-022-02839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02839-0

Keywords

Navigation