Skip to main content
Log in

Biotransformation of 3-cyanopyridine to nicotinic acid using whole-cell nitrilase of Gordonia terrae mutant MN12

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In the present study, the Gordonia terrae was subjected to chemical mutagenesis using ethyl methane sulfonate (EMS) and methyl methane sulfonate (MMS), N-methyl-N-nitro-N-nitrosoguanidine (MNNG), 5-bromouracil (5-BU) and hydroxylamine with the aim of improving the catalytic efficiency of its nitrilase for conversion of 3-cyanopyridine to nicotinic acid. A mutant MN12 generated with MNNG exhibited increase in nitrilase activity from 0.5 U/mg dcw (dry cell weight) (in the wild G. terrae) to 1.33 U/mg dcw. Further optimizations of culture conditions using response surface methodology enhanced the enzyme production to 1.2-fold. Whole-cell catalysis was adopted for bench-scale synthesis of nicotinic acid, and 100% conversion of 100 mM 3-cyanopyridine was achieved in potassium phosphate buffer (0.1 M, pH 8.0) at 40 °C in 15 min. The whole-cell nitrilase of the mutant MN12 exhibited higher rate of product formation and volumetric productivity, i.e., 24.56 g/h/g dcw and 221 g/L as compared to 8.95 g/h/g dcw and 196.8 g/L of the wild G. terrae. The recovered product was confirmed by HPLC, FTIR and NMR analysis with high purity (> 99.9%). These results indicated that the mutant MN12 of G. terrae as whole-cell nitrilase is a very promising biocatalyst for the large-scale synthesis of nicotinic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Freitas CS, Roveda AC, Truzzi DR, Garcia AC, Cunha TM, Cunha FQ, Franco DW (2015) J Med Chem 58:4439–4448

    Article  CAS  Google Scholar 

  2. Liu X, Pan X, Lu M, Sun Y, Wang Z, Zheng Y (2020) Adhes J Sci Technol 35:63–80

    Article  Google Scholar 

  3. Davarpanah J, Ghahremani M, Najafi O (2019) J Mol Struct 1177:525–535

    Article  CAS  Google Scholar 

  4. Gujjarappa R, Vodnala N, Reddy VG, Malakar CC (2020) Eur J Org Chem 7:803–814

    Article  Google Scholar 

  5. Lisicki D, Nowak K (2022) Orli ´ nska B. Materials 15:765–779

    Article  CAS  Google Scholar 

  6. Velankar H, Clarke KG, du Preez R, Cowan DA, Burton SG (2010) Trends in Biotech 28:561–569

    Article  CAS  Google Scholar 

  7. Dong TT, Gong JS, Gu BS, Zhang Q, Li H, Lu ZM, Lu ML, Shi JS, Xu ZH (2017) Bioresource Technol 244:1104–1110

    Article  CAS  Google Scholar 

  8. Mathew CD, Nagasawa T, Kobayashi M, Yamada H (1988) Appl Environ Microbiol 54:1030–1032

    Article  CAS  Google Scholar 

  9. Sharma NN, Sharma M, Bhalla TC (2011) J Ind Microbiol Biotechnol 38:1235–1243

    Article  CAS  Google Scholar 

  10. Badoei-Dalfard A, Karami Z, Ramezani-pour N (2016) J Mol Catal B: Enzym 133:552–559

    Article  Google Scholar 

  11. Thakur N, Kumar V, Thakur S, Sharma N, Bhalla TC (2018) Proces Biochem 73:117–123

    Article  CAS  Google Scholar 

  12. Liu JF, Zhang ZJ, Li AT, Pan J, Xu JH (2011) App Microbiol Biotechnol 89:665–672

    Article  CAS  Google Scholar 

  13. Shen Q, Yu Z, Lv P, Li Q, Zou SP, Xiong N, Liu ZQ, Xue YP, Zheng YG (2020) Appl Microbiol Biotechnol 104:2489–2500

    Article  CAS  Google Scholar 

  14. Martinkova L, Kren V (2010) Curr Opin Chem Biol 14:130–137

    Article  CAS  Google Scholar 

  15. Morley LK, Kazlauskas JR (2005) Trends Biotechnol 23:231–237

    Article  CAS  Google Scholar 

  16. Pratush A, Seth A, Bhalla TC (2010) Acta Microbiol Immunol Hung 57:135–146

    Article  CAS  Google Scholar 

  17. Kumar V, Kumar V, Thakur N, Bhalla TC (2015) Biosyst Eng 38:1267–1279

    CAS  Google Scholar 

  18. Kumar V, Bhalla TC (2013) Biocatal Biotransform 31:42–48

    Article  Google Scholar 

  19. Fawcett JK, Scott JE (1960) J Clin Pathol 13:156–159

    Article  CAS  Google Scholar 

  20. Zhou WW, He YL, Niu TG, Zhong JJ (2010) Bioprocess Biosyst Eng 33:657–663

    Article  CAS  Google Scholar 

  21. Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC (2012) Bioprocess Biosyst Eng 36:613–625

    Article  Google Scholar 

  22. Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC (2013) Appl Microbiol Biotechnol 98:83–94

    Article  Google Scholar 

  23. Moturi B, Charya Singara MA (2010) Afr J Microbiol Res 17:1808–1813

    Google Scholar 

  24. Serrat X, Esteban R, Guibourt N, Moysset L, Nogues S, Lalanne E (2014) Plant Method 10:5–18

    Article  Google Scholar 

  25. Willium G, Shanabruch Robert PR, Irmgard B, Graham CW (1983) J Bacteriol 153:33–34

    Article  Google Scholar 

  26. Olsson M, Lindahl T (1980) J Biol Chem 255:10569–10571

    Article  CAS  Google Scholar 

  27. Mattossovich R, Merlo R, Miggiano R, Valenti A, Perugino G (2020) Int J Mol Sci 21:2878–2897

    Article  CAS  Google Scholar 

  28. Shen M, Zheng YG, Liu ZQ, Shen YC (2009) J Microbiol Biotechnol 19:582–587

    CAS  Google Scholar 

  29. Yusuf F, Chaubey A, Raina A, Jamwal U, Parshad R (2013) Springer Plus 2:290–297

    Article  Google Scholar 

  30. Monika, Sheetal, Thakur N, Bhalla TC (2022) Biotech 12:303–313

    CAS  Google Scholar 

  31. Prasad S, Misra A, Jangir VP, Awasthi A, Raj J, Bhalla TC (2007) World J Microbiol Biotechnol 23:345–353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Indian Council of Medical Research (ICMR), New Delhi, India (F. No. 3/1/3/JRF-2017/HRD-LS/50606/02), and the University Grants Commission (UGC), New Delhi, India (F. No. 18-1/2011 (BSR)/24th Feb 2014), for financial support in the form of Senior Research Fellowship (SRF) to Monika and Basic Scientific Research-Faculty Fellowship (BSR-FF) to Tek Chand Bhalla, respectively.

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by Monika. Design of experiment, analysis and interpretation of data were performed by Monika, NT, Sheetal and TCB. TCB corrected and approved the final manuscript.

Corresponding author

Correspondence to Tek Chand Bhalla.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethical approval

The authors declare that this article does not contain any studies with human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monika, Sheetal, Thakur, N. et al. Biotransformation of 3-cyanopyridine to nicotinic acid using whole-cell nitrilase of Gordonia terrae mutant MN12. Bioprocess Biosyst Eng 46, 195–206 (2023). https://doi.org/10.1007/s00449-022-02823-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02823-8

Keywords

Navigation