Skip to main content

Fungal bioproducts for petroleum hydrocarbons and toxic metals remediation: recent advances and emerging technologies

Abstract

Petroleum hydrocarbons and toxic metals are sources of environmental contamination and are harmful to all ecosystems. Fungi have metabolic and morphological plasticity that turn them into potential prototypes for technological development in biological remediation of these contaminants due to their ability to interact with a specific contaminant and/or produced metabolites. Although fungal bioinoculants producing enzymes, biosurfactants, polymers, pigments and organic acids have potential to be protagonists in mycoremediation of hydrocarbons and toxic metals, they can still be only adjuvants together with bacteria, microalgae, plants or animals in such processes. However, the sudden accelerated development of emerging technologies related to the use of potential fungal bioproducts such as bioinoculants, enzymes and biosurfactants in the remediation of these contaminants, has boosted fungal bioprocesses to achieve higher performance and possible real application. In this review, we explore scientific and technological advances in bioprocesses related to the production and/or application of these potential fungal bioproducts when used in remediation of hydrocarbons and toxic metals from an integral perspective of biotechnological process development. In turn, it sheds light to overcome existing technological limitations or enable new experimental designs in the remediation of these and other emerging contaminants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

PAH:

Polycyclic aromatic hydrocarbons

AMF:

Arbuscular mycorrhizal fungi

NO3 :

Nitrate

SO4 :

Sulfate

CO2 :

Carbon dioxide

H2O:

Water

GC–MS:

Mass spectrometry coupled to gas chromatography

CYP:

Cytochrome P450 monooxygenases

Eh:

Redox potential

HBT:

1-Hydroxybenzotriazole

ABTS:

2:2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)

ROS:

Reactive oxygen species

NER:

Non-extractable residues

CMC:

Critical micelle concentration (CMC)

SL:

Sophorolipids

MEL:

Mannosylerythritol lipids

PL:

Polyol lipids

RBBR:

Remazol brilliant blue R

CTAB:

Cetyltrimethylammonium bromide

DCPIP:

2:6-Dichlorophenol indophenol

CG:

Gas chromatography

MIC:

Minimum inhibitory concentration

AAS:

Atomic absorption spectrometry

ITS:

Internal Transcript Spacer

DGGE:

Denaturing gradient gel electrophoresis

FISH:

Fluorescence in situ hybridization 

T-RFLP:

Terminal restriction fragment length polymorphism

STR:

Stirred tank reactors

CaCO3 :

Calcium carbonate

Na5P3O10 :

Sodium tripolyphosphate

References

  1. Pandey KA, Gaur VK, Udayan A et al (2021) Biocatalytic remediation of industrial pollutants for environmental sustainability: research needs and opportunities. Chemosphere 272:129936. https://doi.org/10.1016/j.chemosphere.2021.129936

    CAS  Article  PubMed  Google Scholar 

  2. Magalhães KM, Carreira RS, Rosa Filho JS et al (2022) Polycyclic aromatic hydrocarbons (PAHs) in fishery resources affected by the 2019 oil spill in Brazil: short-term environmental health and seafood safety. Mar Pollut Bull 175:113334. https://doi.org/10.1016/j.marpolbul.2022.113334

    CAS  Article  PubMed  Google Scholar 

  3. Bevitório LZ, da Silva NG, Pirovani JCM et al (2022) Impacts of tailings of Fundão dam (Brazil) rupture on marine fish: Metals bioaccumulation and physiological responses. Mar Pollut Bull 177:113511. https://doi.org/10.1016/j.marpolbul.2022.113511

    CAS  Article  PubMed  Google Scholar 

  4. Prenafeta-Boldú FX, de Hoog GS, Summerbell RC (2019) Fungal communities in hydrocarbon degradation. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-60063-5_8-2

    Book  Google Scholar 

  5. Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286. https://doi.org/10.1016/j.biortech.2016.10.037

    CAS  Article  PubMed  Google Scholar 

  6. Fayeulle A, Veignie E, Schroll R et al (2019) PAH biodegradation by telluric saprotrophic fungi isolated from aged PAH-contaminated soils in mineral medium and historically contaminated soil microcosms. J Soils Sediments. https://doi.org/10.1007/s11368-019-02312-8

    Article  Google Scholar 

  7. Singh PC, Srivastava S, Shukla D et al (2018) Mycoremediation mechanisms for heavy metal resistance/tolerance in plants. In: Prasad R (ed) Mycoremediation and environmental sustainability. Springer International Publishing

    Google Scholar 

  8. Akhtar N, Mannan MA (2020) Mycoremediation: expunging environmental pollutants. Biotechnol Reports 26:e00452. https://doi.org/10.1016/j.btre.2020.e00452

    Article  Google Scholar 

  9. Chormare R, Anil M (2022) Environmental health and risk assessment metrics with special mention to biotransfer, bioaccumulation and biomagnification of environmental pollutants. Chemosphere 302:134836. https://doi.org/10.1016/j.chemosphere.2022.134836

    CAS  Article  PubMed  Google Scholar 

  10. Teke G, Hubai K, Diósi D et al (2020) Assessment of foliar uptake and accumulation of airborne polyaromatic hydrocarbons under laboratory conditions. Bull Environ Contam Toxicol 104:444–448. https://doi.org/10.1007/s00128-020-02814-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Daccò C, Girometta C, Asemoloye MD et al (2020) Key fungal degradation patterns, enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils: a review. Int Biodeterior Biodegrad 147:104866. https://doi.org/10.1016/j.ibiod.2019.104866

    CAS  Article  Google Scholar 

  12. Quintella CM, Mata AMT, Lima LCP (2019) Overview of bioremediation with technology assessment and emphasis on fungal bioremediation of oil contaminated soils. J Environ Manag 241:156–166. https://doi.org/10.1016/j.jenvman.2019.04.019

    CAS  Article  Google Scholar 

  13. Ross IS (1975) Some effects of heavy metals on fungal cells. Trans Br Mycol Soc 64:175–193. https://doi.org/10.1016/S0007-1536(75)80101-X

    Article  Google Scholar 

  14. Davies JS, Westlake DWS (1979) Crude oil utilization by fungi. Can J Microbiol 25:146–156. https://doi.org/10.1139/m79-023

    CAS  Article  PubMed  Google Scholar 

  15. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315. https://doi.org/10.1128/mr.54.3.305-315.1990

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Vergara-Fernández A, Yánez D, Morales P et al (2018) Biofiltration of benzo[Α]pyrene, toluene and formaldehyde in air by a consortium of Rhodococcus erythropolis and Fusarium solani: effect of inlet loads, gas flow and temperature. Chem Eng J 332:702–710. https://doi.org/10.1016/j.cej.2017.09.095

    CAS  Article  Google Scholar 

  17. Benguenab A, Chibani A (2020) Biodegradation of petroleum hydrocarbons by filamentous fungi (Aspergillus ustus and Purpureocillium lilacinum) isolated from used engine oil contaminated soil. Acta Ecol Sin. https://doi.org/10.1016/j.chnaes.2020.10.008

    Article  Google Scholar 

  18. Njoku KL, Akinyede OR, Obidi OF (2020) Microbial remediation of heavy metals contaminated media by Bacillus megaterium and Rhizopus stolonifer. Sci African 10:e00545. https://doi.org/10.1016/j.sciaf.2020.e00545

    Article  Google Scholar 

  19. Ghorbannezhad H, Moghimi H, Dastgheib SMM (2018) Evaluation of heavy petroleum degradation using bacterial-fungal mixed cultures. Ecotoxicol Environ Saf 164:434–439. https://doi.org/10.1016/j.ecoenv.2018.08.046

    CAS  Article  PubMed  Google Scholar 

  20. Chen C, Hu J, Wang J (2020) Biosorption of uranium by immobilized Saccharomyces cerevisiae. J Environ Radioact 213:106158. https://doi.org/10.1016/j.jenvrad.2020.106158

    CAS  Article  PubMed  Google Scholar 

  21. Damodaran D, Vidya Shetty K, Raj Mohan B (2013) Effect of chelaters on bioaccumulation of Cd (II), Cu (II), Cr (VI), Pb (II) and Zn (II) in Galerina vittiformis from soil. Int Biodeterior Biodegrad 85:182–188. https://doi.org/10.1016/j.ibiod.2013.05.031

    CAS  Article  Google Scholar 

  22. Wollenberg A, Kretzschmar J, Drobot B et al (2021) Uranium(VI) bioassociation by different fungi – a comparative study into molecular processes. J Hazard Mater 411:125068. https://doi.org/10.1016/j.jhazmat.2021.125068

    CAS  Article  PubMed  Google Scholar 

  23. da Silva IGS, de Almeida FCG, Silva FCPR et al (2021) Application of green surfactants in the remediation of soils contaminated by hydrocarbons. Processes 9:1–21. https://doi.org/10.3390/pr9091666

    CAS  Article  Google Scholar 

  24. Baranger C, Pezron I, Lins L et al (2021) A compartmentalized microsystem helps understanding the uptake of benzo [a ] pyrene by fungi during soil bioremediation processes. Sci Total Environ 784:147151. https://doi.org/10.1016/j.scitotenv.2021.147151

    CAS  Article  PubMed  Google Scholar 

  25. Xiao X, Luo S, Zeng G et al (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101:1668–1674. https://doi.org/10.1016/j.biortech.2009.09.083

    CAS  Article  PubMed  Google Scholar 

  26. Saika A, Koike H, Yamamoto S et al (2017) Enhanced production of a diastereomer type of mannosylerythritol lipid-B by the basidiomycetous yeast Pseudozyma tsukubaensis expressing lipase genes from Pseudozyma antarctica. Appl Microbiol Biotechnol 101:8345–8352. https://doi.org/10.1007/s00253-017-8589-6

    CAS  Article  PubMed  Google Scholar 

  27. Bettin F, Cousseau F, Martins K et al (2019) Phenol removal by laccases and other phenol oxidases of Pleurotus sajor-caju PS-2001 in submerged cultivations and aqueous mixtures. J Environ Manag 236:581–590. https://doi.org/10.1016/j.jenvman.2019.02.011

    CAS  Article  Google Scholar 

  28. Ferreira INS, Rodríguez DM, Campos-Takaki GM et al (2020) Biosurfactant and bioemulsifier as promising molecules produced by Mucor hiemalis isolated from Caatinga soil. Electron J Biotechnol 47:51–58. https://doi.org/10.1016/j.ejbt.2020.06.006

    CAS  Article  Google Scholar 

  29. Bodin H, Asp H, Hultberg M (2017) Effects of biopellets composed of microalgae and fungi on cadmium present at environmentally relevant levels in water. Int J Phytoremediation 19:500–504. https://doi.org/10.1080/15226514.2016.1244170

    CAS  Article  PubMed  Google Scholar 

  30. Oh JJ, Kim JY, Kim YJ et al (2021) Utilization of extracellular fungal melanin as an eco-friendly biosorbent for treatment of metal-contaminated effluents. Chemosphere 272:129884. https://doi.org/10.1016/j.chemosphere.2021.129884

    CAS  Article  PubMed  Google Scholar 

  31. Ganesh Kumar A, Manisha D, Sujitha K et al (2021) Genome sequence analysis of deep sea Aspergillus sydowii BOBA1 and effect of high pressure on biodegradation of spent engine oil. Sci Rep 11:1–19. https://doi.org/10.1038/s41598-021-88525-9

    CAS  Article  Google Scholar 

  32. Sánchez-Vázquez V, Shirai K, González I et al (2018) Polycyclic aromatic hydrocarbon-emulsifier protein produced by Aspergillus brasiliensis (niger) in an airlift bioreactor following an electrochemical pretreatment. Bioresour Technol 256:408–413. https://doi.org/10.1016/j.biortech.2018.02.043

    CAS  Article  PubMed  Google Scholar 

  33. Barnes NM, Khodse VB, Lotlikar NP et al (2018) Bioremediation potential of hydrocarbon-utilizing fungi from select marine niches of India. 3 Biotech 8:21. https://doi.org/10.1007/s13205-017-1043-8

    Article  PubMed  Google Scholar 

  34. Kumar V, Dwivedi SK (2021) Bioremediation mechanism and potential of copper by actively growing fungus Trichoderma lixii CR700 isolated from electroplating wastewater. J Environ Manag 277:111370. https://doi.org/10.1016/j.jenvman.2020.111370

    CAS  Article  Google Scholar 

  35. Wulandari R, Lotrakul P, Punnapayak H et al (2021) Toxicity evaluation and biodegradation of phenanthrene by laccase from Trametes polyzona PBURU 12. 3 Biotech 11:1–11. https://doi.org/10.1007/s13205-020-02556-z

    Article  Google Scholar 

  36. Liu H, Yuan M, Tan S et al (2015) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol 89:44–49. https://doi.org/10.1016/j.apsoil.2015.01.006

    Article  Google Scholar 

  37. Wang G, Wang L, Ma F (2022) Effects of earthworms and arbuscular mycorrhizal fungi on improvement of fertility and microbial communities of soils heavily polluted by cadmium. Chemosphere 286:131567. https://doi.org/10.1016/j.chemosphere.2021.131567

    CAS  Article  PubMed  Google Scholar 

  38. Birolli WG, de Santos DA, Alvarenga N et al (2018) Biodegradation of anthracene and several PAHs by the marine-derived fungus Cladosporium sp. CBMAI 1237. Mar Pollut Bull 129:525–533. https://doi.org/10.1016/j.marpolbul.2017.10.023

    CAS  Article  PubMed  Google Scholar 

  39. Chaprão MJ, Ferreira INS, Correa PF et al (2015) Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electron J Biotechnol 18:471–479. https://doi.org/10.1016/j.ejbt.2015.09.005

    Article  Google Scholar 

  40. Li Q, Li J, Jiang L et al (2021) Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil. J Hazard Mater 403:123895. https://doi.org/10.1016/j.jhazmat.2020.123895

    CAS  Article  PubMed  Google Scholar 

  41. Medaura MC, Guivernau M, Moreno-Ventas X et al (2021) Bioaugmentation of native fungi, an efficient strategy for the bioremediation of an aged industrially polluted soil with heavy hydrocarbons. Front Microbiol 12:1–18. https://doi.org/10.3389/fmicb.2021.626436

    Article  Google Scholar 

  42. Li X, Lan X, Feng X et al (2021) Biosorption capacity of Mucor circinelloides bioaugmented with Solanum nigrum L. for the cleanup of lead cadmium and arsenic. Ecotoxicol Environ Saf 212:112014. https://doi.org/10.1016/j.ecoenv.2021.112014

    CAS  Article  PubMed  Google Scholar 

  43. de Lima Souza HM, Sette LD, da Mota AJ et al (2016) Filamentous fungi isolates of contaminated sediment in the Amazon region with the potential for benzo(a)pyrene degradation. Water, Air, Soil Pollut 227:431. https://doi.org/10.1007/s11270-016-3101-y

    CAS  Article  Google Scholar 

  44. Lee AH, Lee H, Mok Y et al (2020) A proposed stepwise screening framework for the selection of polycyclic aromatic hydrocarbon (PAH)- degrading white rot fungi. Bioprocess Biosyst Eng 43:767–783. https://doi.org/10.1007/s00449-019-02272-w

    CAS  Article  PubMed  Google Scholar 

  45. da Silva AF, Banat IM, Giachini AJ et al (2021) Fungal biosurfactants, from nature to biotechnological product: bioprospection, production and potential applications. Bioprocess Biosyst Eng 44:2003–2034. https://doi.org/10.1007/s00449-021-02597-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Fasim A, More VS, More SS (2021) Large-scale production of enzymes for biotechnology uses. Curr Opin Biotechnol 69:68–76. https://doi.org/10.1016/j.copbio.2020.12.002

    CAS  Article  PubMed  Google Scholar 

  47. Feng L, Jiang X, Huang Y et al (2021) Petroleum hydrocarbon-contaminated soil bioremediation assisted by isolated bacterial consortium and sophorolipid. Environ Pollut 273:116476. https://doi.org/10.1016/j.envpol.2021.116476

    CAS  Article  PubMed  Google Scholar 

  48. Shah V, Daverey A (2021) Effects of sophorolipids augmentation on the plant growth and phytoremediation of heavy metal contaminated soil. J Clean Prod 280:124406. https://doi.org/10.1016/j.jclepro.2020.124406

    CAS  Article  Google Scholar 

  49. Eibes G, Arca-Ramos A, Feijoo G et al (2015) Enzymatic technologies for remediation of hydrophobic organic pollutants in soil. Appl Microbiol Biotechnol 99:8815–8829. https://doi.org/10.1007/s00253-015-6872-y

    CAS  Article  PubMed  Google Scholar 

  50. Rathankumar AK, Saikia K, Kumar PS et al (2021) Surfactant-aided mycoremediation of soil contaminated with polycyclic aromatic hydrocarbon ( PAHs ): progress, limitation, and countermeasures. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.6721

    Article  Google Scholar 

  51. Mishra S, Lin Z, Pang S et al (2021) Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. J Hazard Mater 418:126253. https://doi.org/10.1016/j.jhazmat.2021.126253

    CAS  Article  PubMed  Google Scholar 

  52. Elshafie HS, Camele I, Sofo A et al (2020) Mycoremediation effect of Trichoderma harzianum strain T22 combined with ozonation in diesel-contaminated sand. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126597

    Article  PubMed  Google Scholar 

  53. Peidro-Guzmán H, Pérez-Llano Y, González-Abradelo D et al (2021) Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions. Environ Microbiol 23:3435–3459. https://doi.org/10.1111/1462-2920.15166

    CAS  Article  PubMed  Google Scholar 

  54. Bao Q, Huang L, Xiu J et al (2021) Study on the treatment of oily sludge in oil fields with lipopeptide/sophorolipid complex bio-surfactant. Ecotoxicol Environ Saf 212:111964. https://doi.org/10.1016/j.ecoenv.2021.111964

    CAS  Article  PubMed  Google Scholar 

  55. Mishra A, Malik A (2014) Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Bioresour Technol 171:217–226. https://doi.org/10.1016/j.biortech.2014.08.047

    CAS  Article  PubMed  Google Scholar 

  56. Marchand C, St-Arnaud M, Hogland W et al (2017) Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. Int Biodeterior Biodegrad 116:48–57. https://doi.org/10.1016/j.ibiod.2016.09.030

    CAS  Article  Google Scholar 

  57. Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81:229–249. https://doi.org/10.1016/0269-7491(93)90206-4

    CAS  Article  PubMed  Google Scholar 

  58. Ghosal D, Ghosh S, Dutta TK et al (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01369

    Article  PubMed  PubMed Central  Google Scholar 

  59. Khatoon H, Rai JPN, Jillani A (2021) Role of fungi in bioremediation of contaminated soil. Fungi bio-prospects in sustainable agriculture environment and nano-technology. Elsevier, pp 121–156

    Chapter  Google Scholar 

  60. Kadri T, Rouissi T, Kaur BS et al (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74. https://doi.org/10.1016/j.jes.2016.08.023

    CAS  Article  Google Scholar 

  61. Chaillan F, Le Flèche A, Bury E et al (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155:587–595. https://doi.org/10.1016/j.jes.2016.08.023

    CAS  Article  PubMed  Google Scholar 

  62. Dallinger A, Duldhardt I, Kabisch J et al (2016) Biotransformation of cyclohexane and related alicyclic hydrocarbons by Candida maltosa and Trichosporon species. Int Biodeterior Biodegrad 107:132–139. https://doi.org/10.1016/j.ibiod.2015.11.015

    CAS  Article  Google Scholar 

  63. Singh RK, Tripathi R, Ranjan A et al (2020) Fungi as potential candidates for bioremediation. Abat Environ Pollut. https://doi.org/10.1016/B978-0-12-818095-2.00009-6

    Article  Google Scholar 

  64. Fayeulle A, Veignie E, Slomianny C et al (2014) Energy-dependent uptake of benzo [a ] pyrene and its cytoskeleton-dependent intracellular transport by the telluric fungus Fusarium solani. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-013-2324-3

    Article  Google Scholar 

  65. Delsarte I, Rafin C, Mrad F et al (2018) Lipid metabolism and benzo [a ] pyrene degradation by Fusarium solani : an unexplored potential. Environ Sci Pollut Res 25:12177–12182. https://doi.org/10.1007/s11356-017-1164-y

    CAS  Article  Google Scholar 

  66. Chen W, Lee MK, Jefcoate C et al (2014) Fungal cytochrome P450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol Evol 6:1620–1634. https://doi.org/10.1093/gbe/evu132

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Hadibarata T, Tachibana S, Itoh K (2009) Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium. J Hazard Mater 164(9):11–917. https://doi.org/10.1016/j.jhazmat.2008.08.081

    CAS  Article  Google Scholar 

  68. Ostrem Loss EM, Yu JH (2018) Bioremediation and microbial metabolism of benzo(a)pyrene. Mol Microbiol 109:433–444. https://doi.org/10.1111/mmi.14062

    CAS  Article  PubMed  Google Scholar 

  69. Park H, Min B, Jang Y et al (2019) Comprehensive genomic and transcriptomic analysis of polycyclic aromatic hydrocarbon degradation by a mycoremediation fungus, Dentipellis sp. KUC8613. Appl Microbiol Biotechnol 103:8145–8155. https://doi.org/10.1007/s00253-019-10089-6

    CAS  Article  PubMed  Google Scholar 

  70. Ba S, Kumar VV (2017) Recent developments in the use of tyrosinase and laccase in environmental applications. Crit Rev Biotechnol 37:819–832. https://doi.org/10.1080/07388551.2016.1261081

    Article  PubMed  Google Scholar 

  71. Roshandel F, Saadatmand S, Iranbakhsh A et al (2021) Mycoremediation of oil contaminant by Pleurotus florida (P. Kumm ) in liquid culture. Fungal Biol 125:667–678. https://doi.org/10.1016/j.funbio.2021.04.002

    CAS  Article  PubMed  Google Scholar 

  72. Catherine H, Penninckx M, Frédéric D (2016) Product formation from phenolic compounds removal by laccases: a review. Environ Technol Innov 5:250–266. https://doi.org/10.1016/j.eti.2016.04.001

    Article  Google Scholar 

  73. Mohammadi M, Ashabi MA, Salehi P et al (2018) Immobilization of laccase on epoxy-functionalized silica and its application in biodegradation of phenolic compounds. Int J Biol Macromol 109:443–447. https://doi.org/10.1016/j.ijbiomac.2017.12.102

    CAS  Article  PubMed  Google Scholar 

  74. Kües U (2015) Fungal enzymes for environmental management. Curr Opin Biotechnol 33:268–278. https://doi.org/10.1016/j.copbio.2015.03.006

    CAS  Article  PubMed  Google Scholar 

  75. Vipotnik Z, Michelin M, Tavares T (2022) Biodegradation of chrysene and benzo [a ] pyrene and removal of metals from naturally contaminated soil by isolated Trametes versicolor strain and laccase produced thereof. Environ Technol Innov 28:102737. https://doi.org/10.1016/j.eti.2022.102737

    Article  Google Scholar 

  76. Zeng J, Li Y, Dai Y et al (2021) Effects of polycyclic aromatic hydrocarbon structure on PAH mineralization and toxicity to soil microorganisms after oxidative bioremediation by laccase. Environ Pollut 287:117581. https://doi.org/10.1016/j.envpol.2021.117581

    CAS  Article  PubMed  Google Scholar 

  77. Zeng J, Zhu Q, Wu Y et al (2018) Oxidation of benzo[a]pyrene by laccase in soil enhances bound residue formation and reduces disturbance to soil bacterial community composition. Environ Pollut 242:462–469. https://doi.org/10.1016/j.envpol.2018.06.075

    CAS  Article  PubMed  Google Scholar 

  78. Wu Y, Teng Y, Li Z et al (2008) Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol Biochem 40:789–796. https://doi.org/10.1016/j.soilbio.2007.10.013

    CAS  Article  Google Scholar 

  79. Vipotnik Z, Michelin M, Tavares T (2022) Rehabilitation of a historically contaminated soil by different laccases and laccase-mediator system. J Soils Sediments 22:1546–1554. https://doi.org/10.1007/s11368-021-03125-4

    CAS  Article  Google Scholar 

  80. Li X, Lin X, Yin R et al (2010) Optimization of laccase-mediated benzo[a]pyrene oxidation and the bioremedial application in aged polycyclic aromatic hydrocarbons-contaminated soil. J Heal Sci 56:534–540. https://doi.org/10.1248/jhs.56.534

    CAS  Article  Google Scholar 

  81. Mate DM, Alcalde M (2015) Laccase engineering: from rational design to directed evolution. Biotechnol Adv 33:25–40. https://doi.org/10.1016/j.biotechadv.2014.12.007

    CAS  Article  PubMed  Google Scholar 

  82. Deng J, Wang H, Zhan H et al (2022) Catalyzed degradation of polycyclic aromatic hydrocarbons by recoverable magnetic chitosan immobilized laccase from Trametes versicolor. Chemosphere 301:134753. https://doi.org/10.1016/j.chemosphere.2022.134753

    CAS  Article  PubMed  Google Scholar 

  83. Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705. https://doi.org/10.1016/j.biotechadv.2010.05.002

    CAS  Article  PubMed  Google Scholar 

  84. Wu Y, Jiang Y, Jiao J et al (2014) Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies. Colloids Surfaces B Biointerfaces 114:342–348. https://doi.org/10.1016/j.colsurfb.2013.10.016

    CAS  Article  PubMed  Google Scholar 

  85. Yang Z, Mao X, Cui J et al (2021) Enhancement and analysis of anthracene degradation by Tween 80 in LMS-HOBt. Sci Rep 11:1–11. https://doi.org/10.1038/s41598-021-90609-5

    CAS  Article  Google Scholar 

  86. Kästner M, Nowak KM, Miltner A et al (2014) Classification and modelling of nonextractable residue (NER) formation of xenobiotics in soil – a synthesis. Crit Rev Environ Sci Technol 44:2107–2171. https://doi.org/10.1080/10643389.2013.828270

    CAS  Article  Google Scholar 

  87. Li X, Lin X, Zhang J et al (2010) Degradation of polycyclic aromatic hydrocarbons by crude extracts from spent mushroom substrate and its possible mechanisms. Curr Microbiol 60:336–342. https://doi.org/10.1007/s00284-009-9546-0

    CAS  Article  PubMed  Google Scholar 

  88. Chiadò A, Bosco F, Bardelli M et al (2021) Rational engineering of the lccβ T. versicolor laccase for the mediator-less oxidation of large polycyclic aromatic hydrocarbons. Comput Struct Biotechnol J 19:2213–2222. https://doi.org/10.1016/j.csbj.2021.03.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Alcalde M (2015) Engineering the ligninolytic enzyme consortium. Trends Biotechnol 33:155–162. https://doi.org/10.1016/j.tibtech.2014.12.007

    CAS  Article  PubMed  Google Scholar 

  90. Chen X, Hu Z, Xie H et al (2021) Enhanced biocatalysis of phenanthrene in aqueous phase by novel CA-Ca-SBE-laccase biocatalyst: performance and mechanism. Colloids Surf A Physicochem Eng Asp 611:125884. https://doi.org/10.1016/j.colsurfa.2020.125884

    CAS  Article  Google Scholar 

  91. Zhang Q, Zeng G, Chen G et al (2015) The effect of heavy metal-induced oxidative stress on the enzymes in white rot fungus phanerochaete chrysosporium. Appl Biochem Biotechnol 175:1281–1293. https://doi.org/10.1007/s12010-014-1298-z

    CAS  Article  PubMed  Google Scholar 

  92. Mota EA, Felestrino ÉB, Leão VA et al (2020) Manganese (II) removal from aqueous solutions by Cladosporium halotolerans and Hypocrea jecorina. Biotechnol Rep 25:e00431. https://doi.org/10.1016/j.btre.2020.e00431

    Article  Google Scholar 

  93. Chakraborty S, Mukherjee A, Das TK (2013) Biochemical characterization of a lead-tolerant strain of Aspergillus foetidus: an implication of bioremediation of lead from liquid media. Int Biodeterior Biodegrad 84:134–142. https://doi.org/10.1016/j.ibiod.2012.05.031

    CAS  Article  Google Scholar 

  94. Mosa KA, Saadoun I, Kumar K et al (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:1–14. https://doi.org/10.3389/fpls.2016.00303

    Article  Google Scholar 

  95. Fernández PM, Viñarta SC, Bernal AR et al (2018) Bioremediation strategies for chromium removal: current research, scale-up approach and future perspectives. Chemosphere 208:139–148. https://doi.org/10.1016/j.chemosphere.2018.05.166

    CAS  Article  PubMed  Google Scholar 

  96. Alsharari SF, Tayel AA, Moussa SH (2018) Soil emendation with nano-fungal chitosan for heavy metals biosorption. Int J Biol Macromol 118:2265–2268. https://doi.org/10.1016/j.ijbiomac.2018.07.103

    CAS  Article  PubMed  Google Scholar 

  97. Lu N, Hu T, Zhai Y et al (2020) Fungal cell with artificial metal container for heavy metals biosorption: equilibrium, kinetics study and mechanisms analysis. Environ Res 182:109061. https://doi.org/10.1016/j.envres.2019.109061

    CAS  Article  PubMed  Google Scholar 

  98. Ma X, Cui W, Yang L et al (2015) Efficient biosorption of lead ( II ) and cadmium ( II ) ions from aqueous solutions by functionalized cell with intracellular CaCO3 mineral scaffolds. Bioresour Technol 185:70–78. https://doi.org/10.1016/j.biortech.2015.02.074

    CAS  Article  PubMed  Google Scholar 

  99. Dusengemungu L, Kasali G, Gwanama C (2020) Recent advances in biosorption of copper and cobalt by filamentous fungi. Front Microbiol 11:1–16. https://doi.org/10.3389/fmicb.2020.582016

    Article  Google Scholar 

  100. Xu P, Leng Y, Zeng G et al (2015) Cadmium induced oxalic acid secretion and its role in metal uptake and detoxification mechanisms in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 99:435–443. https://doi.org/10.1007/s00253-014-5986-y

    CAS  Article  PubMed  Google Scholar 

  101. Harms H, Schlosser D, Wick LY (2011) Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192. https://doi.org/10.1038/nrmicro2519

    CAS  Article  PubMed  Google Scholar 

  102. Hassan SE, Hijri M, St-Arnaud M (2013) Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. N Biotechnol 30:780–787. https://doi.org/10.1016/j.nbt.2013.07.002

    CAS  Article  PubMed  Google Scholar 

  103. Muñoz AJ, Ruiz E, Abriouel H et al (2012) Heavy metal tolerance of microorganisms isolated from wastewaters: identification and evaluation of its potential for biosorption. Chem Eng J 210:325–332. https://doi.org/10.1016/j.cej.2012.09.007

    CAS  Article  Google Scholar 

  104. Barea-Sepúlveda M, Espada-Bellido E, Ferreiro-González M et al (2022) Toxic elements and trace elements in Macrolepiota procera mushrooms from southern Spain and northern Morocco. J Food Compos Anal 108:104419. https://doi.org/10.1016/j.jfca.2022.104419

    CAS  Article  Google Scholar 

  105. Ahmed E, Holmström SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7:196–208. https://doi.org/10.1111/1751-7915.12117

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Yang J, Wang Q, Luo Q et al (2009) Biosorption behavior of heavy metals in bioleaching process of MSWI fly ash by Aspergillus niger. Biochem Eng J 46:294–299. https://doi.org/10.1016/j.bej.2009.05.022

    CAS  Article  Google Scholar 

  107. Boriová K, Čerňanský S, Matúš P et al (2014) Bioaccumulation and biovolatilization of various elements using filamentous fungus Scopulariopsis brevicaulis. Lett Appl Microbiol 59:217–223. https://doi.org/10.1111/lam.12266

    CAS  Article  PubMed  Google Scholar 

  108. Li Q, Liu J, Gadd GM (2020) Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals. Appl Microbiol Biotechnol 104:8999–9008. https://doi.org/10.1007/s00253-020-10854-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. Souza EC, Vessoni-Penna TC, Oliveira RPS (2014) Biosurfactant-enhanced hydrocarbon bioremediation : an overview. Int Biodeterior Biodegradation 89:88–94. https://doi.org/10.1016/j.ibiod.2014.01.007

    CAS  Article  Google Scholar 

  110. Al-Hawash AB, Zhang X, Ma F (2019) Removal and biodegradation of different petroleum hydrocarbons using the filamentous fungus Aspergillus sp. RFC- 1. Microbiolopen 8:e00619. https://doi.org/10.1002/mbo3.619

    CAS  Article  Google Scholar 

  111. Kamyabi A, Nouri H, Moghimi H (2017) Synergistic effect of Sarocladium sp. and Cryptococcus sp. co-culture on crude oil biodegradation and biosurfactant production. Appl Biochem Biotechnol 182:324–334. https://doi.org/10.1007/s12010-016-2329-8

    CAS  Article  PubMed  Google Scholar 

  112. Sarubbo LA, Rocha RB, Luna JM et al (2015) Some aspects of heavy metals contamination remediation and role of biosurfactants. Chem Ecol 31:707–723. https://doi.org/10.1080/02757540.2015.1095293

    CAS  Article  Google Scholar 

  113. Bami MS, Estabragh MAR, Ohadi M et al (2022) Biosurfactants aided bioremediation mechanisms: a mini-review. Soil Sediment Contam An Int J. https://doi.org/10.1080/15320383.2021.2016603

    Article  Google Scholar 

  114. Chandran P, Das N (2012) Role of sophorolipid biosurfactant in degradation of diesel oil by Candida tropicalis. Bioremediat J 16:19–30. https://doi.org/10.1080/10889868.2011.628351

    CAS  Article  Google Scholar 

  115. Singh SK, Singh MK, Verma H et al (2021) Biosurfactant producing microbes for clean-up of soil contaminants. Microbe Mediat Rem Environ Contam. https://doi.org/10.1016/B978-0-12-821199-1.00009-2

    Article  Google Scholar 

  116. Santos DKF, Resende AHM, de Almeida DG et al (2017) Candida lipolytica UCP0988 biosurfactant: potential as a bioremediation agent and in formulating a commercial related product. Front Microbiol 8:1–11. https://doi.org/10.3389/fmicb.2017.00767

    CAS  Article  Google Scholar 

  117. Mulligan CN, Yong RN, Gibbs BF (2001) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85:145–163. https://doi.org/10.1016/S0304-3894(01)00226-6

    CAS  Article  PubMed  Google Scholar 

  118. Pino-Herrera DO, Pechaud Y, Huguenot D et al (2017) Removal mechanisms in aerobic slurry bioreactors for remediation of soils and sediments polluted with hydrophobic organic compounds: an overview. J Hazard Mater 339:427–449. https://doi.org/10.1016/j.jhazmat.2017.06.013

    CAS  Article  PubMed  Google Scholar 

  119. Gałązka A, Grządziel J, Gałązka R et al (2020) Fungal community, metabolic diversity, and glomalin-related soil proteins (GRSP) content in soil contaminated with crude oil after long-term natural bioremediation. Front Microbiol 2020:11. https://doi.org/10.3389/fmicb.2020.572314

    Article  Google Scholar 

  120. Puglisi I, Faedda R, Sanzaro V et al (2012) Identification of differentially expressed genes in response to mercury I and II stress in Trichoderma harzianum. Gene 506:325–330. https://doi.org/10.1016/j.gene.2012.06.091

    CAS  Article  PubMed  Google Scholar 

  121. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494. https://doi.org/10.1016/0006-291X(68)90503-2

    CAS  Article  PubMed  Google Scholar 

  122. Rehman R, Ishtiaq M, Ali N et al (2021) Crude oil biodegradation potential of biosurfactant-producing Pseudomonas aeruginosa and Meyerozyma sp. J Hazard Mater 418:126276. https://doi.org/10.1016/j.jhazmat.2021.126276

    CAS  Article  PubMed  Google Scholar 

  123. Niu Y, Fan L, Gu D et al (2017) Characterization, enhancement and modelling of mannosylerythritol lipid production by fungal endophyte Ceriporia lacerate CHZJU. Food Chem 228:610–617. https://doi.org/10.1016/j.foodchem.2017.02.042

    CAS  Article  PubMed  Google Scholar 

  124. Wang M, Mao W, Wang X et al (2019) Efficient simultaneous production of extracellular polyol esters of fatty acids and intracellular lipids from inulin by a deep-sea yeast Rhodotorula paludigena P4R5. Microb Cell Fact 18:149. https://doi.org/10.1186/s12934-019-1200-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  125. Chen S, Zhou Z, Tsang DCW et al (2020) Glomalin-related soil protein reduces the sorption of polycyclic aromatic hydrocarbons by soils. Chemosphere 260:127603. https://doi.org/10.1016/j.chemosphere.2020.127603

    CAS  Article  PubMed  Google Scholar 

  126. Yuan B, Li H, Hong H et al (2022) Immobilization of lead ( II ) and zinc ( II ) onto glomalin-related soil protein (GRSP ): adsorption properties and interaction mechanisms. Ecotoxicol Environ Saf 236:113489. https://doi.org/10.1016/j.ecoenv.2022.113489

    CAS  Article  PubMed  Google Scholar 

  127. Zadeh PH, Moghimi H, Hamedi J (2018) Biosurfactant production by Mucor circinelloides : environmental applications and surface-active properties. Eng Life Sci 18:317–325. https://doi.org/10.1002/elsc.201700149

    CAS  Article  Google Scholar 

  128. Kreling NE, Zaparoli M, Margarites AC et al (2020) Extracellular biosurfactants from yeast and soil–biodiesel interactions during bioremediation. Int J Environ Sci Technol 17:395–408. https://doi.org/10.1007/s13762-019-02462-9

    CAS  Article  Google Scholar 

  129. Kreling NE, Simon V, Fagundes VD et al (2020) Simultaneous production of lipases and biosurfactants in solid-state fermentation and use in bioremediation. J Environ Eng 146:04020105. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001785

    CAS  Article  Google Scholar 

  130. Goswami T, Tack FMG, McGachy L et al (2020) Remediation of aviation kerosene-contaminated soil by sophorolipids from Candida bombicola CB 2107. Appl Sci 10:1–11. https://doi.org/10.3390/app10061981

    CAS  Article  Google Scholar 

  131. Luna JM, Rufino RD, Sarubbo LA (2016) Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Saf Environ Prot 102:558–566. https://doi.org/10.1016/j.psep.2016.05.010

    CAS  Article  Google Scholar 

  132. Arab F, Mulligan CN (2018) An eco-friendly method for heavy metal removal from mine tailings. Environ Sci Pollut Res 25:16202–16216. https://doi.org/10.1007/s11356-018-1770-3

    CAS  Article  Google Scholar 

  133. Qi X, Xu X, Zhong C et al (2018) Removal of cadmium and lead from contaminated soils using sophorolipids from fermentation culture of Starmerella bombicola CGMCC 1576 fermentation. Int J Environ Res Public Health 15:2334. https://doi.org/10.3390/ijerph15112334

    CAS  Article  PubMed Central  Google Scholar 

  134. Batista RM, Rufino RD, Luna JM et al (2010) Effect of medium components on the production of a biosurfactant from Candida tropicalis applied to the removal of hydrophobic contaminants in soil. Water Environ Res 82:418–425. https://doi.org/10.2175/106143009X12487095237279

    CAS  Article  PubMed  Google Scholar 

  135. Pele MA, Ribeaux DR, Vieira ER et al (2019) Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electron J Biotechnol 38:40–48. https://doi.org/10.1016/j.ejbt.2018.12.003

    CAS  Article  Google Scholar 

  136. Sobrinho HBS, Rufino RD, Luna JM et al (2008) Utilization of two agroindustrial by-products for the production of a surfactant by Candida sphaerica UCP0995. Process Biochem 43:912–917. https://doi.org/10.1016/j.procbio.2008.04.013

    CAS  Article  Google Scholar 

  137. Olaniran A, Balgobind A, Pillay B (2013) Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 14:10197–10228. https://doi.org/10.3390/ijms140510197

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. Becarelli S, Chicca I, La China S, Siracusa G, Bardi A, Gullo M et al (2021) A new Ciboria sp. for soil mycoremediation and the bacterial contribution to the depletion of total petroleum hydrocarbons. Front Microbiol. https://doi.org/10.3389/fmicb.2021.647373

    Article  PubMed  PubMed Central  Google Scholar 

  139. Al-Hawash AB, Alkooranee JT, Abbood HA et al (2018) Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field, Iraq. Biotechnol Reports 17:104–109. https://doi.org/10.1016/j.btre.2017.12.006

    Article  Google Scholar 

  140. Fernández PM, Martorell MM, Blaser MG et al (2017) Phenol degradation and heavy metal tolerance of Antarctic yeasts. Extremophiles 21:445–457. https://doi.org/10.1007/s00792-017-0915-5

    CAS  Article  PubMed  Google Scholar 

  141. Shetaia YMH, El Khalik WAA, Mohamed TM et al (2016) Potential biodegradation of crude petroleum oil by newly isolated halotolerant microbial strains from polluted red sea area. Mar Pollut Bull 111:435–442. https://doi.org/10.1016/j.marpolbul.2016.02.035

    CAS  Article  PubMed  Google Scholar 

  142. Bik HM, Halanych KM, Sharma J et al (2012) Dramatic shifts in benthic microbial eukaryote communities following the deepwater horizon oil spill. PLoS ONE. https://doi.org/10.1371/journal.pone.0038550

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chang J, Duan Y, Dong J et al (2019) Bioremediation of Hg-contaminated soil by combining a novel Hg-volatilizing Lecythophora sp. fungus, DC-F1, with biochar: Performance and the response of soil fungal community. Sci Total Environ 671:676–684. https://doi.org/10.1016/j.scitotenv.2019.03.409

    CAS  Article  PubMed  Google Scholar 

  144. Chaudhary P, Beniwal V, Sharma P et al (2022) Unloading of hazardous Cr and tannic acid from real and synthetic waste water by novel fungal consortia. Environ Technol Innov 26:102230. https://doi.org/10.1016/j.eti.2021.102230

    CAS  Article  Google Scholar 

  145. Williams W, Trindade M (2017) Metagenomics for the discovery of novel biosurfactants. Functional metagenomics: tools and applications. Springer International Publishing, Cham, pp 95–117

    Chapter  Google Scholar 

  146. Prenafeta-Boldú FX, Kuhn A, Luykx DMAM et al (2001) Isolation and characterisation of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res 105:477–484. https://doi.org/10.1017/S0953756201003719

    Article  Google Scholar 

  147. Satow MM, Attili-Angelis D, de Hoog GS et al (2008) Selective factors involved in oil flotation isolation of black yeasts from the environment. Stud Mycol 61:157–163. https://doi.org/10.3114/sim.2008.61.16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  148. Poyntner C, Prem M, Mann O et al (2017) Selective screening: Isolation of fungal strains from contaminated soils in Austria. Bodenkultur 68:157–169. https://doi.org/10.1515/boku-2017-0014

    CAS  Article  Google Scholar 

  149. Lee H, Jang Y, Choi Y-S et al (2014) Biotechnological procedures to select white rot fungi for the degradation of PAHs. J Microbiol Methods 97:56–62. https://doi.org/10.1016/j.mimet.2013.12.007

    CAS  Article  PubMed  Google Scholar 

  150. Ortega-González DK, Cristiani-Urbina E, Flores-Ortíz CM et al (2014) Evaluation of the removal of pyrene and fluoranthene by Ochrobactrum anthropi, Fusarium sp. and their coculture. Appl Biochem Biotechnol 175:1123–1138. https://doi.org/10.1007/s12010-014-1336-x

    CAS  Article  PubMed  Google Scholar 

  151. Bovio E, Gnavi G, Prigione V et al (2017) The culturable mycobiota of a Mediterranean marine site after an oil spill: isolation, identification and potential application in bioremediation. Sci Total Environ 576:310–318. https://doi.org/10.1016/j.scitotenv.2016.10.064

    CAS  Article  PubMed  Google Scholar 

  152. Ameen F, Moslem M, Hadi S et al (2016) Biodegradation of diesel fuel hydrocarbons by mangrove fungi from red sea coast of Saudi Arabia. Saudi J Biol Sci 23:211–218. https://doi.org/10.1016/j.sjbs.2015.04.005

    CAS  Article  PubMed  Google Scholar 

  153. Atakpa EO, Zhou H, Jiang L et al (2022) Improved degradation of petroleum hydrocarbons by co-culture of fungi and biosurfactant-producing bacteria. Chemosphere 290:133337. https://doi.org/10.1016/j.chemosphere.2021.133337

    CAS  Article  PubMed  Google Scholar 

  154. Ghorbannezhad H, Moghimi H, Mohammad S et al (2021) Evaluation of pyrene and tetracosane degradation by mixed-cultures of fungi and bacteria. J Hazard Mater 416:126202. https://doi.org/10.1016/j.jhazmat.2021.126202

    CAS  Article  PubMed  Google Scholar 

  155. Khan I, Ali M, Aftab M et al (2019) Mycoremediation: a treatment for heavy metal-polluted soil using indigenous metallotolerant fungi. Environ Monit Assess. https://doi.org/10.1007/s10661-019-7781-9

    Article  PubMed  Google Scholar 

  156. Liu J, Yue P, Huang L et al (2020) Styrene removal with an acidic biofilter with four packing materials: performance and fungal bioaerosol emissions. Environ Res 191:110154. https://doi.org/10.1016/j.envres.2020.110154

    CAS  Article  PubMed  Google Scholar 

  157. Fazli MM, Soleimani N, Mehrasbi M et al (2015) Highly cadmium tolerant fungi: their tolerance and removal potential. J Environ Heal Sci Eng 13:1–9. https://doi.org/10.1186/s40201-015-0176-0

    CAS  Article  Google Scholar 

  158. Reyes-César A, Absalón ÁE, Fernández FJ et al (2014) Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil. World J Microbiol Biotechnol 30:999–1009. https://doi.org/10.1007/s11274-013-1518-7

    CAS  Article  PubMed  Google Scholar 

  159. Grace Liu P-W, Chang TC, Whang L-M et al (2011) Bioremediation of petroleum hydrocarbon contaminated soil: effects of strategies and microbial community shift. Int Biodeterior Biodegr 65:1119–1127. https://doi.org/10.1016/j.ibiod.2011.09.002

    CAS  Article  Google Scholar 

  160. Zafra G, Absalón ÁE, Anducho-Reyes MÁ et al (2017) Construction of PAH-degrading mixed microbial consortia by induced selection in soil. Chemosphere 172:120–126. https://doi.org/10.1016/j.chemosphere.2016.12.038

    CAS  Article  PubMed  Google Scholar 

  161. Hesham AEL, Khan S, Tao Y et al (2012) Biodegradation of high molecular weight PAHs using isolated yeast mixtures: application of meta-genomic methods for community structure analyses. Environ Sci Pollut Res 19:3568–3578. https://doi.org/10.1007/s11356-012-0919-8

    CAS  Article  Google Scholar 

  162. Gorfer M, Persak H, Berger H et al (2009) Identification of heavy metal regulated genes from the root associated ascomycete Cadophora finlandica using a genomic microarray. Mycol Res 113:1377–1388. https://doi.org/10.1016/j.mycres.2009.09.005

    CAS  Article  PubMed  Google Scholar 

  163. Trippe KM, Wolpert TJ, Hyman MR et al (2014) RNAi silencing of a cytochrome P450 monoxygenase disrupts the ability of a filamentous fungus, Graphium sp., to grow on short-chain gaseous alkanes and ethers. Biodegradation 25:137–151. https://doi.org/10.1007/s10532-013-9646-1

    CAS  Article  PubMed  Google Scholar 

  164. De Oliveira VH, Ullah I, Dunwell JM et al (2020) Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa. Ecotoxicol Environ Saf 202:110917. https://doi.org/10.1016/j.ecoenv.2020.110917

    CAS  Article  PubMed  Google Scholar 

  165. Mäkelä MR, Tuomela M, Hatakka A et al (2020) Fungal laccases and their potential in bioremediation applications. Laccases Bioremediation Waste Valoris. https://doi.org/10.1007/978-3-030-47906-0_1

    Article  Google Scholar 

  166. Téllez-Jurado A, Arana-Cuenca A, Becerra AEG et al (2006) Expression of a heterologous laccase by Aspergillus niger cultured by solid-state and submerged fermentations. Enzyme Microb Technol 38:665–669. https://doi.org/10.1016/j.enzmictec.2005.07.021

    CAS  Article  Google Scholar 

  167. Balcázar-López E, Méndez-Lorenzo LH, Batista-García RA et al (2016) Xenobiotic compounds degradation by heterologous expression of a Trametes sanguineus laccase in Trichoderma atroviride. PLoS ONE 11:e0147997. https://doi.org/10.1371/journal.pone.0147997

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  168. Nikolaivits E, Dimarogona M, Karagiannaki I et al (2018) Versatile fungal polyphenol oxidase with chlorophenol bioremediation potential: characterization and protein engineering. Appl Environ Microbiol 84:1–16. https://doi.org/10.1128/AEM.01628-18

    Article  Google Scholar 

  169. Syed K, Porollo A, Lam YW et al (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702. https://doi.org/10.1128/AEM.03767-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  170. Boczonádi I, Török Z, Jakab Á et al (2020) Increased Cd2+ biosorption capability of Aspergillus nidulans elicited by crpA deletion. J Basic Microbiol 60:574–584. https://doi.org/10.1002/jobm.202000112

    CAS  Article  PubMed  Google Scholar 

  171. Oliveira JS, Araújo W, Lopes Sales AI et al (2015) BioSurfDB: knowledge and algorithms to support biosurfactants and biodegradation studies. Database 2015:1–8. https://doi.org/10.1093/database/bav033

    CAS  Article  Google Scholar 

  172. Dhanjal DS, Sharma D (2018) Microbial metagenomics for industrial and environmental bioprospecting: the unknown envoy. Microbial bioprospecting for sustainable development. Springer Singapore, pp 327–352

    Chapter  Google Scholar 

  173. Sun Y, Liu L, Zeng J et al (2020) Enhanced cometabolism of benzo ( a ) anthracene by the lignin monomer vanillate is related to structural and functional responses of the soil microbiome. Soil Biol Biochem 149:107908. https://doi.org/10.1016/j.soilbio.2020.107908

    CAS  Article  Google Scholar 

  174. Kolhe N, Kulkarni A, Zinjarde S et al (2021) Transcriptome response of the tropical marine yeast Yarrowia lipolytica on exposure to uranium. Curr Microbiol 78:2033–2043. https://doi.org/10.1007/s00284-021-02459-z

    CAS  Article  PubMed  Google Scholar 

  175. Li J, Xu Y, Song Q et al (2021) Transmembrane transport mechanism of n-hexadecane by Candida tropicalis: kinetic study and proteomic analysis. Ecotoxicol Environ Saf 209:111789. https://doi.org/10.1016/j.ecoenv.2020.111789

    CAS  Article  PubMed  Google Scholar 

  176. Rissoni Toledo GA, Reyes Andrade JC, Palmieri MC et al (2021) Innovative method for encapsulating highly pigmented biomass from Aspergillus nidulans mutant for copper ions removal and recovery. PLoS ONE 16:1–21. https://doi.org/10.1371/journal.pone.0259315

    CAS  Article  Google Scholar 

  177. Han J, Hu L, He L et al (2020) Preparation and uranium (VI) biosorption for tri-amidoxime modified marine fungus material. Environ Sci Pollut Res 27:37313–37323. https://doi.org/10.1007/s11356-020-07746-z

    CAS  Article  Google Scholar 

  178. Robichaud K, Girard C, Dagher D et al (2019) Local fungi, willow and municipal compost effectively remediate petroleum-contaminated soil in the Canadian North. Chemosphere 220:47–55. https://doi.org/10.1016/j.chemosphere.2018.12.108

    CAS  Article  PubMed  Google Scholar 

  179. Ariste AF, Batista-García RA, Vaidyanathan VK et al (2020) Mycoremediation of phenols and polycyclic aromatic hydrocarbons from a biorefinery wastewater and concomitant production of lignin modifying enzymes. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.119810

    Article  Google Scholar 

  180. Covino S, D’Annibale A, Stazi SR et al (2015) Assessment of degradation potential of aliphatic hydrocarbons by autochthonous filamentous fungi from a historically polluted clay soil. Sci Total Environ 505:545–554. https://doi.org/10.1016/j.scitotenv.2014.10.027

    CAS  Article  PubMed  Google Scholar 

  181. Fan M-Y, Xie R-J, Qin G (2014) Bioremediation of petroleum-contaminated soil by a combined system of biostimulation–bioaugmentation with yeast. Environ Technol 35:391–399. https://doi.org/10.1080/09593330.2013.829504

    CAS  Article  PubMed  Google Scholar 

  182. Potin O, Rafin C, Veignie E (2004) Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int Biodeterior Biodegr 54:45–52. https://doi.org/10.1016/j.ibiod.2004.01.003

    CAS  Article  Google Scholar 

  183. Valentín L, Lu-Chau TA, López C et al (2007) Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Process Biochem 42:641–648. https://doi.org/10.1016/j.procbio.2006.11.011

    CAS  Article  Google Scholar 

  184. Bilen Ozyurek S, Avcioglu NH, Seyis Bilkay I (2021) Mycoremediation potential of Aspergillus ochraceus NRRL 3174. Arch Microbiol 203:5937–5950. https://doi.org/10.1007/s00203-021-02490-5

    CAS  Article  PubMed  Google Scholar 

  185. Rusinova-Videva S, Nachkova S, Adamov A et al (2020) Antarctic yeast Cryptococcus laurentii (AL65): biomass and exopolysaccharide production and biosorption of metals. J Chem Technol Biotechnol 95:1372–1379. https://doi.org/10.1002/jctb.6321

    CAS  Article  Google Scholar 

  186. Azin E, Moghimi H, Heidarytabar R (2018) Petroleum degradation, biosurfactant and laccase production by Fusarium neocosmosporiellum RH-10: a microcosm study. Soil Sediment Contam An Int J 27:329–342. https://doi.org/10.1080/15320383.2018.1473334

    CAS  Article  Google Scholar 

  187. Hashem M, Alamri SA, Al-zomyh SSAA et al (2018) Biodegradation and detoxification of aliphatic and aromatic hydrocarbons by new yeast strains. Ecotoxicol Environ Saf 151:28–34. https://doi.org/10.1016/j.ecoenv.2017.12.064

    CAS  Article  PubMed  Google Scholar 

  188. Batista-García A, Vinoth V, Ariste A et al (2017) Simple screening protocol for identification of potential mycoremediation tools for the elimination of polycyclic aromatic hydrocarbons and phenols from hyperalkalophile industrial effluents. J Environ Manag 198:1–11. https://doi.org/10.1016/j.jenvman.2017.05.010

    CAS  Article  Google Scholar 

  189. Moghimi H, HeidaryTabar R, Hamedi J (2017) Assessing the biodegradation of polycyclic aromatic hydrocarbons and laccase production by new fungus Trematophoma sp. UTMC 5003. World J Microbiol Biotechnol 33:136. https://doi.org/10.1007/s11274-017-2304-8

    CAS  Article  PubMed  Google Scholar 

  190. Ma X, Li X, Liu J et al (2021) Soil microbial community succession and interactions during combined plant/white-rot fungus remediation of polycyclic aromatic hydrocarbons. Sci Total Environ 752:142224. https://doi.org/10.1016/j.scitotenv.2020.142224

    CAS  Article  PubMed  Google Scholar 

  191. Alpat Ş, Alpat SK, Çadirci BH et al (2010) Effects of biosorption parameter: kinetics, isotherm and thermodynamics for Ni(II) biosorption from aqueous solution by Circinella sp. Electron J Biotechnol. https://doi.org/10.2225/vol13-issue5-fulltext-20

    Article  Google Scholar 

  192. El-Morsy ESM (2004) Cunninghamella echinulata a new biosorbent of metal ions from polluted water in Egypt. Mycologia 96:1183–1189. https://doi.org/10.2307/3762133

    CAS  Article  Google Scholar 

  193. Sharma R, Talukdar D, Bhardwaj S et al (2020) Bioremediation potential of novel fungal species isolated from wastewater for the removal of lead from liquid medium. Environ Technol Innov 18:100757. https://doi.org/10.1016/j.eti.2020.100757

    Article  Google Scholar 

  194. Purchase D, Scholes LNL, Revitt DM et al (2009) Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands. J Appl Microbiol 106:1163–1174. https://doi.org/10.1111/j.1365-2672.2008.04082.x

    CAS  Article  PubMed  Google Scholar 

  195. Xu F, Chen P, Li H et al (2021) Comparative transcriptome analysis reveals the differential response to cadmium stress of two Pleurotus fungi: Pleurotus cornucopiae and Pleurotus ostreatus. J Hazard Mater 416:125814. https://doi.org/10.1016/j.jhazmat.2021.125814

    CAS  Article  PubMed  Google Scholar 

  196. Morales-Barrera L, Cristiani-Urbina E (2006) Removal of hexavalent chromium by Trichoderma viride in an airlift bioreactor. Enzyme Microb Technol 40:107–113. https://doi.org/10.1016/j.enzmictec.2005.10.044

    CAS  Article  Google Scholar 

  197. Zhang Y, Liu J, Qin Y et al (2019) Performance and microbial community evolution of toluene degradation using a fungi-based bio-trickling filter. J Hazard Mater 365:642–649. https://doi.org/10.1016/j.jhazmat.2018.11.062

    CAS  Article  PubMed  Google Scholar 

  198. Vergara-Fernández A, Revah S, Moreno-Casas P et al (2018) Biofiltration of volatile organic compounds using fungi and its conceptual and mathematical modeling. Biotechnol Adv 36:1079–1093. https://doi.org/10.1016/j.biotechadv.2018.03.008

    CAS  Article  PubMed  Google Scholar 

  199. Srivastava AK, Singh RK, Singh D (2021) Microbe-based bioreactor system for bioremediation of organic contaminants: present and future perspective. Elsevier, pp 241–253

    Google Scholar 

  200. Bruneel J, Huepe Follert JL, Laforce B et al (2020) Dynamic performance of a fungal biofilter packed with perlite for the abatement of hexane polluted gas streams using SIFT-MS and packing characterization with advanced X-ray spectroscopy. Chemosphere 253:1–10. https://doi.org/10.1016/j.chemosphere.2020.126684

    CAS  Article  Google Scholar 

  201. Syed K, Doddapaneni H, Subramanian V et al (2010) Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochem Biophys Res Commun 399:492–497. https://doi.org/10.1016/j.bbrc.2010.07.094

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  202. Gu D, Xiang X, Wu Y et al (2022) Synergy between fungi and bacteria promotes polycyclic aromatic hydrocarbon cometabolism in lignin-amended soil. J Hazard Mater 425:127958. https://doi.org/10.1016/j.jhazmat.2021.127958

    CAS  Article  PubMed  Google Scholar 

  203. Al-Hawash AB, Dragh MA, Li S et al (2018) Principles of microbial degradation of petroleum hydrocarbons in the environment. Egypt J Aquat Res 44:71–76. https://doi.org/10.1016/j.ejar.2018.06.001

    Article  Google Scholar 

  204. Zhang X, Kong D, Liu X et al (2021) Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. Chemosphere 273:129666. https://doi.org/10.1016/j.chemosphere.2021.129666

    CAS  Article  PubMed  Google Scholar 

  205. da Rocha Junior RB, Meira HM, Almeida DG et al (2019) Application of a low-cost biosurfactant in heavy metal remediation processes. Biodegradation 30:215–233. https://doi.org/10.1007/s10532-018-9833-1

    CAS  Article  PubMed  Google Scholar 

  206. Rufino RD, Luna JM, Marinho PHC et al (2013) Removal of petroleum derivative adsorbed to soil by biosurfactant Rufisan produced by Candida lipolytica. J Pet Sci Eng 109:117–122. https://doi.org/10.1016/j.petrol.2013.08.014

    CAS  Article  Google Scholar 

  207. Thomsen CN, Hart MM (2018) Using invasion theory to predict the fate of arbuscular mycorrhizal fungal inoculants. Biol Invasions 20:2695–2706. https://doi.org/10.1007/s10530-018-1746-8

    Article  Google Scholar 

  208. Chaudhary T, Dixit M, Gera R et al (2020) Techniques for improving formulations of bioinoculants. 3 Biotech 10:199. https://doi.org/10.1007/s13205-020-02182-9

    Article  PubMed  PubMed Central  Google Scholar 

  209. Chandran P, Das N (2011) Degradation of diesel oil by immobilized Candida tropicalis and biofilm formed on gravels. Biodegradation 22:1181–1189. https://doi.org/10.1007/s10532-011-9473-1

    CAS  Article  PubMed  Google Scholar 

  210. Nowak K, Wiater A, Choma A et al (2019) Fungal (1→3)-α-D-glucans as a new kind of biosorbent for heavy metals. Int J Biol Macromol 137:960–965. https://doi.org/10.1016/j.ijbiomac.2019.07.036

    CAS  Article  PubMed  Google Scholar 

  211. Cobas M, Ferreira L, Tavares T et al (2013) Development of permeable reactive biobarrier for the removal of PAHs by Trichoderma longibrachiatum. Chemosphere 91:711–716. https://doi.org/10.1016/j.chemosphere.2013.01.028

    CAS  Article  PubMed  Google Scholar 

  212. Dai Y, Yin L, Niu J (2011) Laccase-carrying electrospun fibrous membranes for adsorption and degradation of PAHs in shoal soils. Environ Sci Technol 45:10611–10618. https://doi.org/10.1021/es203286e

    CAS  Article  PubMed  Google Scholar 

  213. Mukherjee T, Chakraborty S, Biswas AA et al (2017) Bioremediation potential of arsenic by non-enzymatically biofabricated silver nanoparticles adhered to the mesoporous carbonized fungal cell surface of Aspergillus foetidus MTCC8876. J Environ Manag 201:435–446. https://doi.org/10.1016/j.jenvman.2017.06.030

    CAS  Article  Google Scholar 

  214. Tang J, He J, Xin X et al (2018) Biosurfactants enhanced heavy metals removal from sludge in the electrokinetic treatment. Chem Eng J 334:2579–2592. https://doi.org/10.1016/j.cej.2017.12.010

    CAS  Article  Google Scholar 

  215. Camargo FP, do Prado PF, Tonello PS et al (2018) Bioleaching of toxic metals from sewage sludge by co-inoculation of Acidithiobacillus and the biosurfactant-producing yeast Meyerozyma guilliermondii. J Environ Manag 211:28–35. https://doi.org/10.1016/j.jenvman.2018.01.045

    CAS  Article  Google Scholar 

  216. Ye M, Sun M, Wan J et al (2016) Feasibility of lettuce cultivation in sophoroliplid-enhanced washed soil originally polluted with Cd, antibiotics, and antibiotic-resistant genes. Ecotoxicol Environ Saf 124:344–350. https://doi.org/10.1016/j.ecoenv.2015.11.013

    CAS  Article  PubMed  Google Scholar 

  217. Deng S, Zeng D (2017) Removal of phenanthrene in contaminated soil by combination of alfalfa, white-rot fungus, and earthworms. Environ Sci Pollut Res 24:7565–7571. https://doi.org/10.1007/s11356-017-8466-y

    CAS  Article  Google Scholar 

  218. Li X, Chen AY, Wu Y et al (2018) Applying β-cyclodextrin to amaranth inoculated with white-rot fungus for more efficient remediation of soil co-contaminated with Cd and BDE-209. Sci Total Environ 634:417–426. https://doi.org/10.1016/j.scitotenv.2018.03.310

    CAS  Article  PubMed  Google Scholar 

  219. Shi Z, Liu J, Tang Z et al (2020) Vermiremediation of organically contaminated soils: concepts, current status, and future perspectives. Appl Soil Ecol 147:103377. https://doi.org/10.1016/j.apsoil.2019.103377

    Article  Google Scholar 

  220. Chachina SB, Voronkova NA, Baklanova ON (2015) Biological remediation of the engine lubricant oil-contaminated soil with three kinds of earthworms, Eisenia fetida, Eisenia andrei Dendrobena veneta, and a mixture of microorganisms. Proc Eng 113:113–123. https://doi.org/10.1016/j.proeng.2015.07.302

    CAS  Article  Google Scholar 

  221. Hassan A, Periathamby A, Ahmed A et al (2020) Effective bioremediation of heavy metal–contaminated landfill soil through bioaugmentation using consortia of fungi. J Soils Sediments 20:66–80. https://doi.org/10.1007/s11368-019-02394-4

    CAS  Article  Google Scholar 

  222. Chandra S, Sharma R, Singh K et al (2013) Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Ann Microbiol 63:417–431. https://doi.org/10.1007/s13213-012-0543-3

    CAS  Article  Google Scholar 

  223. Ahmad I (2022) Microalgae-bacteria consortia: a review on the degradation of polycyclic aromatic hydrocarbons (PAHs). Arab J Sci Eng 47:19–43. https://doi.org/10.1007/s13369-021-06236-9

    CAS  Article  Google Scholar 

  224. Leng L, Li W, Chen J et al (2021) Co-culture of fungi-microalgae consortium for wastewater treatment: a review. Bioresour Technol 330:125008. https://doi.org/10.1016/j.biortech.2021.1

    CAS  Article  PubMed  Google Scholar 

  225. Al-Fawwaz AT, Jacob JH, Al-wahishe TE (2016) Bioremoval capacity of phenol by green micro-algal and fungal species isolated from dry environment. Int J Sci Technol Res 5:155–160

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Undergraduate Program in Bioprocess and Biotechnology Engineering and Environmental Chemistry of the Federal University of Tocantins-BR and the Graduate Program in Biotechnology and Biosciences of the Federal University of Santa Catarina-BR for promoting the professional qualification of the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Felipe da Silva.

Ethics declarations

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva, A.F., Banat, I.M., Robl, D. et al. Fungal bioproducts for petroleum hydrocarbons and toxic metals remediation: recent advances and emerging technologies. Bioprocess Biosyst Eng (2022). https://doi.org/10.1007/s00449-022-02763-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00449-022-02763-3

Keywords

  • Mycoremediation
  • Contamination
  • Bioinoculants
  • Enzymes
  • Biosurfactants