Skip to main content
Log in

High-sodium maltobionate production by immobilized Zymomonas mobilis cells in polyurethane

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The purpose of this study was the production of maltobionic acid, in the form of sodium maltobionate, by Z. mobilis cells immobilized in polyurethane. The in situ immobilized system (0.125–0.35 mm) was composed of 7 g polyol, 3.5 g isocyanate, 0.02 g silicone, and 7 g Z. mobilis cell, at the concentration of 210 g/L. The bioconversion of maltose to sodium maltobionate was performed with different cell concentrations (7.0–9.0 gimobilized/Lreaction_medium), temperature (30.54–47.46 °C), pH (5.55–7.25), and substrate concentration (0.7–1.3 mol/L). The stability of the immobilized system was evaluated for 24 h bioconversion cycles and storage of 6 months. The maximum concentration of sodium maltobionate was 648.61 mmol/L in 34.34 h process (8.5 gdry_cell/Lreaction_medium) at 39 °C and pH 6.30. The immobilized system showed stability for 19 successive operational cycles of 24 h bioconversion and 6 months of storage, at 4 °C or 22 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GFOR:

Glucose-fructose oxidoreductase

GL:

Glucono-δ-lactonase

NADP+ :

Nicotinamide adenine dinucleotide phosphate

NADPH:

Dihydro nicotinamide adenine dinucleotide phosphate

PU:

Polyurethane

P:

Mass productivity

q:

Specific productivity

References

  1. Suehiro D, Kawase H, Uehara S et al (2020) Maltobionic acid accelerates recovery from iron deficiency-induced anemia in rats. Biosci Biotechnol Biochem 84:393–401. https://doi.org/10.1080/09168451.2019.1676694

    Article  CAS  PubMed  Google Scholar 

  2. Miyake, T.; Sato Y (1975) Process for the production of foods and drinks with the employment of maltobionc acid, US Patent 1975/3.899.604.

  3. Yuen S (1974) Mixture of maltobionic acid and monosodium glutamate as a food seasoning, US Patent 1974/3.829.583.

  4. Nielsen PM (2010) Maltobionate as antioxidant in food products, US Patent Application Publication 2010/0173044 A.

  5. Gutiérrez L-F, Hamoudi S, Belkacemi K (2012) Lactobionic acid: A high value-added lactose derivative for food and pharmaceutical applications. Int Dairy J 26:103–111. https://doi.org/10.1016/j.idairyj.2012.05.003

    Article  CAS  Google Scholar 

  6. Alonso S, Rendueles M, Díaz M (2013) Bio-production of lactobionic acid: Current status, applications and future prospects. Biotechnol Adv 31:1275–1291. https://doi.org/10.1016/j.biotechadv.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  7. Minal N, Bharwade BS et al (2017) Lactobionic Acid: Significance and Application in Food and Pharmaceutical. Int J Fermented Foods 6:25. https://doi.org/10.5958/2321-712X.2017.00003.5

    Article  Google Scholar 

  8. Malvessi E, Carra S, da Silveira MM, Ayub MAZ (2010) Effect of substrate concentration, pH, and temperature on the activity of the complex glucose–fructose oxidoreductase/glucono-δ-lactonase present in calcium alginate-immobilized Zymomonas mobilis cells. Biochem Eng J 51:1–6. https://doi.org/10.1016/j.bej.2010.04.003

    Article  CAS  Google Scholar 

  9. Malvessi E, Carra S, Pasquali FC et al (2013) Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis. J Ind Microbiol Biotechnol 40:1–10. https://doi.org/10.1007/s10295-012-1198-6

    Article  CAS  PubMed  Google Scholar 

  10. Folle AB, Baschera VM, Vivan LT et al (2018) Assessment of different systems for the production of aldonic acids and sorbitol by calcium alginate-immobilized Zymomonas mobilis cells. Bioprocess Biosyst Eng 41:185–194. https://doi.org/10.1007/s00449-017-1856-1

    Article  CAS  PubMed  Google Scholar 

  11. Delagustin MG, Gonçalves E, Carra S et al (2019) Sodium, potassium, calcium lactobionates, and lactobionic acid from Zymomonas mobilis: a novel approach about stability and stress tests. J Pharm Biomed Anal 174:104–114. https://doi.org/10.1016/j.jpba.2019.05.060

    Article  CAS  PubMed  Google Scholar 

  12. Carra S, Rodrigues DC, Beraldo NMC et al (2020) High lactobionic acid production by immobilized Zymomonas mobilis cells: a great step for large-scale process. Bioprocess Biosyst Eng 43:1265–1276. https://doi.org/10.1007/s00449-020-02323-7

    Article  CAS  PubMed  Google Scholar 

  13. Zachariou M, Scopes RK (1986) Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. J Bacteriol 167:863–869. https://doi.org/10.1128/jb.167.3.863-869.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang J, Xu P, Long L, Ding S (2021) Production of lactobionic acid using an immobilized cellobiose dehydrogenase/laccase system on magnetic chitosan spheres. Process Biochem 100:1–9. https://doi.org/10.1016/j.procbio.2020.09.024

    Article  CAS  Google Scholar 

  15. Jang K-H, Jung S-J, Chang H-S, Chun U-H (1996) Improvement of the process for sorbitol production with Zymomonas mobilis immobilised in κ-carrageenan. Process Biochem 31:485–492. https://doi.org/10.1016/0032-9592(95)00092-5

    Article  CAS  Google Scholar 

  16. Ferraz HC, Borges CP, Alves TLM (2000) Sorbitol and gluconic acid production using permeabilized zymomonas mobilis cells confined by hollow-fiber membranes. Appl Biochem Biotechnol 89:43–54. https://doi.org/10.1385/ABAB:89:1:43

    Article  CAS  PubMed  Google Scholar 

  17. Vignoli JA, Celligoi MAC, da Silva RSF, de Barros M (2006) The production of sorbitol by permeabilized and immobilized cells of Z. mobilis in sucrose. Brazilian Arch Biol Technol 49:683–687. https://doi.org/10.1590/S1516-89132006000500020

    Article  CAS  Google Scholar 

  18. Mukhopadhyay R, Chatterjee S, Chatterjee BP et al (2005) Production of gluconic acid from whey by free and immobilized Aspergillus niger. Int Dairy J 15:299–303. https://doi.org/10.1016/j.idairyj.2004.07.010

    Article  CAS  Google Scholar 

  19. Nyari NLD, Fernandes IA, Bustamante-Vargas CE et al (2016) In situ immobilization of Candida antarctica B lipase in polyurethane foam support. J Mol Catal B Enzym. https://doi.org/10.1016/j.molcatb.2015.12.003

    Article  Google Scholar 

  20. Facin BR, Valério A, de Oliveira D, Oliveira JV (2020) Developing an immobilized low-cost biocatalyst for FAME synthesis. Biocatal Agric Biotechnol 29:101752. https://doi.org/10.1016/j.bcab.2020.101752

    Article  Google Scholar 

  21. de Ory I, Cabrera G, Ramirez M, Blandino A (2020) Immobilization of Cells on Polyurethane Foam. pp 407–415

  22. Nyari N, Paulazzi A, Zamadei R et al (2018) Synthesis of isoamyl acetate by ultrasonic system using Candida antarctica lipase B immobilized in polyurethane. J Food Process Eng 41:e12812. https://doi.org/10.1111/jfpe.12812

    Article  CAS  Google Scholar 

  23. Nyari NLD, Paulazi AR, Steffens C et al (2017) Optimization of olive oil hydrolysis process using immobilized lipase from Burkholderia cepacia sp. in polyurethane. Acta Sci - Technol 39:385–393. https://doi.org/10.4025/actascitechnol.v39i4.30770

    Article  Google Scholar 

  24. Malvessi E, Concatto K, Carra S, Silveira M (2006) Formulation of medium for growth and production of ethanol and intracellular enzymes by Zymomonas mobilis. Brazilian Arch Biol Technol 49:139–144

    CAS  Google Scholar 

  25. Souza RS, Silva LM, Carra S, Flores ML, Puton BMS, Malvessi E, Valduga E, Zeni J (2021) Immobilization of Zymomonas mobilis In situ in Flexible Polyurethane and Potential for Bioconversion in Sodium Maltobionate. Biointerface Res Appl Chem 12:279–291. https://doi.org/10.33263/BRIAC121.279291

    Article  Google Scholar 

  26. Urnau L, Colet R, Gayeski L et al (2020) Fed-batch carotenoid production by Phaffia rhodozyma Y-17268 using agroindustrial substrates. Biointerface Res Appl Chem 10:5348–5354. https://doi.org/10.33263/BRIAC103.348354

    Article  CAS  Google Scholar 

  27. Pedruzzi I, Malvessi E, Mata VG et al (2007) Quantification of lactobionic acid and sorbitol from enzymatic reaction of fructose and lactose by high-performance liquid chromatography. J Chromatogr A 1145:128–132. https://doi.org/10.1016/j.chroma.2007.01.051

    Article  CAS  PubMed  Google Scholar 

  28. Garin DL Uso do Sistema Enzimático de Zymomonas mobilis para a Produção de Ácidos Maltobiônico e Lactobiônico. Dissertation (Master in Biotechnology), Universidade de Caxias do Sul, Caxias do Sul.

  29. Flores ML (2019) Síntese biocatalítica, recuperação e caracterização físico-química do ácido maltobiônico. Dissertation (Master in Biotechnology), Universidade de Caxias do Sul, Caxias do Sul

  30. Malvessi E (2008) Produção de Sorbitol e Ácidos Orgânicos por Zymomonas mobilis. Thesis (Doctorate in Science)), Universidade Federal do Rio Grande do Sul, Porto Alegre.

  31. Oh Y-R, Jang Y-A, Hong SH, Eom GT (2020) High-level production of maltobionic acid from high-maltose corn syrup by genetically engineered Pseudomonas taetrolens. Biotechnol Reports 28:e00558. https://doi.org/10.1016/j.btre.2020.e00558

    Article  Google Scholar 

  32. Lima, U.A.; Aquarone, E.; Borzani, W.; Schmidell W (2013) Biotecnologia Industrial

  33. Alonso S, Rendueles M, Díaz M (2015) A novel approach to monitor stress-induced physiological responses in immobilized microorganisms. Appl Microbiol Biotechnol 99:3573–3583. https://doi.org/10.1007/s00253-015-6517-1

    Article  CAS  PubMed  Google Scholar 

  34. Mao S, Liu Y, Hou Y et al (2018) Efficient production of sugar-derived aldonic acids by Pseudomonas fragi TCCC11892. RSC Adv 8:39897–39901. https://doi.org/10.1039/C8RA07556E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the coordination of Improvement of Higher Education Personnel – Brazil (CAPES) – Financing Code 001, National Council for Scientific and Technological Development (CNPq), Research Support Foundation of the State of Rio Grande do Sul (FAPERGS), URI Erechim, and UCS Caxias do Sul.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamile Zeni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, R.C., da Silva, L.M., Carra, S. et al. High-sodium maltobionate production by immobilized Zymomonas mobilis cells in polyurethane. Bioprocess Biosyst Eng 45, 1465–1476 (2022). https://doi.org/10.1007/s00449-022-02756-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02756-2

Keywords

Navigation