Skip to main content
Log in

High lactobionic acid production by immobilized Zymomonas mobilis cells: a great step for large-scale process

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

A Correction to this article was published on 30 April 2020

This article has been updated

Abstract

Lactobionic acid and sorbitol are produced from lactose and fructose in reactions catalyzed by glucose–fructose oxidoreductase and glucono-δ-lactonase, periplasmic enzymes present in Zymomonas mobilis cells. Considering the previously established laboratory-scale process parameters, the bioproduction of lactobionic acid was explored to enable the transfer of this technology to the productive sector. Aspects such as pH, temperature, reuse and storage conditions of Ca-alginate immobilized Z. mobilis cells, and large-scale bioconversion were assessed. Greatest catalyst performance was observed between pH range of 6.4 and 6.8 and from 39 to 43 °C. The immobilized biocatalyst was reused for twenty three 24-h batches preserving the enzymatic activity. The activity was maintained during biocatalyst storage for up to 120 days. Statistically similar results, approximately 510 mmol/L of lactobionic acid, were attained in bioconversion of 0.2 and 3.0 L, indicating the potential of this technique of lactobionic acid production to be scaled up to the industrial level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 30 April 2020

    In the original publication, table captions were incorrectly published. The correct captions are given here.

References

  1. Tufvesson P, Fu W, Jensen JS, Woodley JM (2010) Food and bioproducts processing process considerations for the scale-up and implementation of biocatalysis. Food Bioprod Process 88:3–11. https://doi.org/10.1016/j.fbp.2010.01.003

    Article  CAS  Google Scholar 

  2. Sumimoto R, Kamada N (1990) Lactobionate as the most important component in UW solution for liver preservation. Transplant Proc 22:2198–2199

    CAS  PubMed  Google Scholar 

  3. Murzina EV, Tokarev AV, Kordás K et al (2008) d-Lactose oxidation over gold catalysts. Catal Today 131:385–392. https://doi.org/10.1016/j.cattod.2007.10.080

    Article  CAS  Google Scholar 

  4. Park IK, Ihm JE, Park YH et al (2003) Galactosylated chitosan (GC)-graft-poly(vinyl pyrrolidone) (PVP) as hepatocyte-targeting DNA carrier: preparation and physicochemical characterization of GC-graft-PVP/DNA complex (1). J Control Release 86:349–359. https://doi.org/10.1016/S0168-3659(02)00365-6

    Article  CAS  PubMed  Google Scholar 

  5. Chernyy S, Jensen BEB, Shimizu K et al (2013) Surface grafted glycopolymer brushes to enhance selective adhesion of HepG2 cells. J Colloid Interface Sci 404:207–214. https://doi.org/10.1016/j.jcis.2013.04.025

    Article  CAS  PubMed  Google Scholar 

  6. Yu RJ, Van Scott EJ (2004) Alpha-hydroxyacids and carboxylic acids. J Cosmet Dermatol 3:76–87. https://doi.org/10.1111/j.1473-2130.2004.00059.x

    Article  PubMed  Google Scholar 

  7. Fischer E, Meyer J (1889) Oxydetion delr Milchsuckers. Berichte der Dtsch Chem Gesellschaft 22:361–364

    Article  Google Scholar 

  8. Nath A, Verasztó B, Basak S et al (2016) Synthesis of lactose-derived nutraceuticals from dairy waste whey—a review. Food Bioprocess Technol 9:16–48. https://doi.org/10.1007/s11947-015-1572-2

    Article  CAS  Google Scholar 

  9. Alonso S, Rendueles M, Díaz M (2013) Bio-production of lactobionic acid: current status, applications and future prospects. Biotechnol Adv 31:1275–1291. https://doi.org/10.1016/j.biotechadv.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  10. Zachariou M, Scopes RK (1986) Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. J Bacteriol 167:863–869

    Article  CAS  Google Scholar 

  11. Satory M, Fürlinger M, Haltrich D et al (1997) Continuous enzymatic production of lactobionic acid using glucose-fructose oxidoreductase in an ultrafiltration membrane reactor. Biotechnol Lett 19:1205–1208. https://doi.org/10.1023/A:1018485804167

    Article  CAS  Google Scholar 

  12. Malvessi E, Carra S, Pasquali FC et al (2013) Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis. J Ind Microbiol Biotechnol 40:1–10. https://doi.org/10.1007/s10295-012-1198-6

    Article  CAS  PubMed  Google Scholar 

  13. Delagustin MG, Gonçalves E, Carra S et al (2019) Sodium, potassium, calcium lactobionates, and lactobionic acid from Zymomonas mobilis: a novel approach about stability and stress tests. J Pharm Biomed Anal 174:104–114. https://doi.org/10.1016/j.jpba.2019.05.060

    Article  CAS  PubMed  Google Scholar 

  14. Delagustin MG, Gonçalves E, Carra S et al (2017) Bioproduction and characterization of sodium, potassium, and calcium lactobionates. Quim Nov. https://doi.org/10.21577/0100-4042.20170108

    Article  Google Scholar 

  15. Malvessi E, Carra S, Silveira MM, Ayub MAZ (2010) Effect of substrate concentration, pH, and temperature on the activity of the complex glucose-fructose oxidoreductase/glucono-δ-lactonase present in calcium alginate-immobilized Zymomonas mobilis cells. Biochem Eng J 51:1–6

    Article  CAS  Google Scholar 

  16. Folle AB, Baschera VM, Vivan LT et al (2018) Assessment of different systems for the production of aldonic acids and sorbitol by calcium alginate-immobilized Zymomonas mobilis cells. Bioprocess Biosyst Eng 41:185–194. https://doi.org/10.1007/s00449-017-1856-1

    Article  CAS  PubMed  Google Scholar 

  17. Niu X, Wang Z, Li Y et al (2013) “Fish-in-Net”, a novel method for cell immobilization of Zymomonas mobilis. PLoS ONE. https://doi.org/10.1371/journal.pone.0079569

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mohamad NR, Marzuki NHC, Buang NA et al (2015) Review; agriculture and environmental biotechnology an overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29:205–220. https://doi.org/10.1080/13102818.2015.1008192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carra S (2012) Estudo cinético da produção de ácido lactobiônico e sorbitol por enzimas periplasmáticas de Zymomonas mobilis. Dissertation Mestr, Universidade de Caxias do Sul, pp 1–107

  20. Gacesa P (1988) Alginates. Carbohydr Polym 8:161–182. https://doi.org/10.1016/0144-8617(88)90001-X

    Article  CAS  Google Scholar 

  21. Gombotz WR, Wee SF (2012) Protein release from alginate matrices. Adv Drug Deliv Rev 64:194–205. https://doi.org/10.1016/j.addr.2012.09.007

    Article  Google Scholar 

  22. Malvessi E, Concatto K, Carra S, da Silveira MM (2006) Formulation of medium for growth and production of ethanol and intracellular enzymes by Zymomonas mobilis. Braz Arch Biol Technol 49:139–144

    CAS  Google Scholar 

  23. Rehr B, Wilhelm C, Sahm H (1991) Production of sorbitol and gluconic acid by permeabilized cells of Zymomonas mobilis. Appl Microbiol Biotechnol. https://doi.org/10.1007/BF00184677

    Article  Google Scholar 

  24. Jang K-H, Jung S-J, Chang H-S, Chun U-H (1996) Improvement of the process for sorbitol production with Zymomonas mobilis immobilised in κ-carrageenan. Process Biochem 31:485–492. https://doi.org/10.1016/0032-9592(95)00092-5

    Article  CAS  Google Scholar 

  25. Severo Júnior JB, Pinto JC, Ferraz HC, Alves TLM (2011) Analysis of experimental errors in bioprocesses. 1. Production of lactobionic acid and sorbitol using the GFOR (glucose–fructose oxidoreductase) enzyme from permeabilized cells of Zymomonas mobilis. J Ind Microbiol Biotechnol 38:1575–1585. https://doi.org/10.1007/s10295-011-0948-1

    Article  CAS  Google Scholar 

  26. Pedruzzi I, Silva EAB, Rodrigues AE (2011) Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: a kinetic study. Enzyme Microb Technol 49:183–191. https://doi.org/10.1016/j.enzmictec.2011.04.017

    Article  CAS  PubMed  Google Scholar 

  27. Pedruzzi I, Malvessi E, Mata VG et al (2007) Quantification of lactobionic acid and sorbitol from enzymatic reaction of fructose and lactose by high-performance liquid chromatography. J Chromatogr A 1145:128–132. https://doi.org/10.1016/j.chroma.2007.01.051

    Article  CAS  PubMed  Google Scholar 

  28. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals. McGraw-Hill, New York

    Google Scholar 

  29. Chun UH, Rogers PL (1988) The simultaneous production of sorbitol from fructose and gluconic acid from glucose using an oxidoreductase of Zymomonas mobilis. Appl Microbiol Biotechnol 29:19–24. https://doi.org/10.1007/BF00258345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil), the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Brazil), Universidade Federal do Rio Grande do Sul (UFRGS), and the Universidade de Caxias do Sul (UCS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Carra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carra, S., Rodrigues, D.C., Beraldo, N.M.C. et al. High lactobionic acid production by immobilized Zymomonas mobilis cells: a great step for large-scale process. Bioprocess Biosyst Eng 43, 1265–1276 (2020). https://doi.org/10.1007/s00449-020-02323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02323-7

Keywords

Navigation