Skip to main content

Advertisement

Log in

Removal of petroleum hydrocarbon-contaminated soil using a solid-phase microbial fuel cell with a 3D corn stem carbon electrode modified with carbon nanotubes

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Solid-phase microbial fuel cell (SMFC) can accelerate the removal of organic pollutants through the electrons transfer between microorganisms and anodes in the process of generating electricity. Thus, the characteristics of the anode material will affect the performance of SMFCs. In this study, corn stem (CS) is first calcined into a 3D macroporous electrode, and then modified with carbon nanotubes (CNTs) through electrochemical deposition method. Scanning electron microscope analysis showed the CS/CNT anode could increase the contact area on the surface. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry analysis indicated the electrochemical double-layer capacitance of the CS/CNT anode increased while its internal resistance decreased significantly. These characteristics are crucial for increasing bacterial adhesion capability and electron transfer rate. The maximum output voltage of the SMFC with CS/CNT anode was 158.42 mV, and the removal rate of petroleum hydrocarbon (PH) reached 42.17%, 2.72 times that of unmodified CS. In conclusion, CNT-modified CS is conducive to improve electron transfer rate and microbial attachment, enhancing the removal efficiency of PH in soil.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hazaimeh MD, Ahmed ES (2021) Bioremediation perspectives and progress in petroleum pollution in the marine environment: a review. Environ Sci Pollut Res 28:54238–54259. https://doi.org/10.1007/s11356-021-15598-4

    Article  Google Scholar 

  2. Gao H, Wu M, Liu H, Xu YR, Liu ZL (2021) Effect of petroleum hydrocarbon pollution levels on the soil microecosystem and ecological function. Environ Pollut 293:118511. https://doi.org/10.1016/j.envpol.2021.118511

    Article  CAS  PubMed  Google Scholar 

  3. Varjani SJ, Upasani VN (2016) Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Biores Technol 222:195–201. https://doi.org/10.1016/j.biortech.2016.10.006

    Article  CAS  Google Scholar 

  4. Han B, Song ZL, Li Q, Zheng L (2019) Evaluation of new diagnostic ratios of naphthalenes and fluorenes by identifying severely weathered oils collected in laboratory simulations and coastal weathering experiments. Arch Environ Contam Toxicol 76:508–517. https://doi.org/10.1007/s00244-018-0570-6

    Article  CAS  PubMed  Google Scholar 

  5. Vasudevan N, Rajaram P (2001) Bioremediation of oil sludge-contaminated soil. Environ Int 26:409–411. https://doi.org/10.1016/S0160-4120(01)00020-4

    Article  CAS  PubMed  Google Scholar 

  6. Rhykerd RL, Crews B, McInnes KJ, Weaver RW (1999) Impact of bulking agents, forced aeration, and tillage on remediation of oil-contaminated soil. Biores Technol 67:279–285. https://doi.org/10.1016/S0960-8524(98)00114-X

    Article  CAS  Google Scholar 

  7. Ding Z, Chen W, Hou J, Wang Q, Liu W, Christie P, Luo Y (2021) Hydrogen peroxide combined with surfactant leaching and microbial community recovery from oil sludge. Chemosphere 286:131750. https://doi.org/10.1016/j.chemosphere.2021.131750

    Article  CAS  PubMed  Google Scholar 

  8. Manli WA, Warren A, Dick B, Wei L (2015) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeterior Biodegradation 107:158–164. https://doi.org/10.1016/j.ibiod.2015.11.019

    Article  CAS  Google Scholar 

  9. Łebkowska M, Zborowska E, Karwowska E, Miaskiewicz PE, Muszynski A, Tabernacka A, Naumczyk J, Jęczalik M (2011) Bioremediation of soil polluted with fuels by sequential multiple injection of native microorganisms: field scale processes in Poland. Ecol Eng 37:1895–1900. https://doi.org/10.1016/j.ecoleng.2011.06.047

    Article  Google Scholar 

  10. Taccari M, Milanovic V, Comitini F, Casucci C, Ciani M (2012) Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. Int Biodeterior Biodegradation 66:39–46. https://doi.org/10.1016/j.ibiod.2011.09.012

    Article  CAS  Google Scholar 

  11. Chandrasekhar K, Mohan SV (2012) Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: effect of substrate concentration. Biores Technol 110:517–525. https://doi.org/10.1016/j.biortech.2012.01.128

    Article  CAS  Google Scholar 

  12. Budihardjo MA, Effendi AJ, Hidayat S, Purnawan C, Lantasi ALD, Muhammad FL, Ramadan BS (2021) Waste valorization using solid-phase microbial fuel cells (SMFCs): recent trends and status. J Environ Manag 277:111417. https://doi.org/10.1016/j.jenvman.2020.111417

    Article  CAS  Google Scholar 

  13. Li C, Omine K, Sivasankar V, Sano H, Chicas SD (2021) Development of low-cost solid phase microbial fuel cell using organic waste and recycling of materials after power generation: characterization of carbon anode. Biomass Bioenerg 154:106266. https://doi.org/10.1016/j.biombioe.2021.106266

    Article  CAS  Google Scholar 

  14. Lu XY, von Haxthausen KA, Brock AL, Trapp S (2021) Turnover of lake sediments treated with sediment microbial fuel cells: a long-term study in a eutrophic lake. Sci Total Environ 796:148880. https://doi.org/10.1016/j.scitotenv.2021.148880

    Article  CAS  PubMed  Google Scholar 

  15. Liang YX, Zhai HY, Wang RM, Guo YJ, Ji M (2021) Effects of water flow on performance of soil microbial fuel cells: electricity generation, benzo[a]pyrene removal, microbial community and molecular ecological networks. Environ Res 202:111658. https://doi.org/10.1016/j.envres.2021.111658

    Article  CAS  PubMed  Google Scholar 

  16. Ma J, Zhang Q, Chen F, Lu SJ, Wang YF, Liang HG (2021) Simultaneous removal of copper and biodegradation of BDE-209 with soil microbial fuel cells. J Environ Chem Eng 9:105593. https://doi.org/10.1016/j.jece.2021.105593

    Article  CAS  Google Scholar 

  17. Guo HY, Tang SF, Xie SX, Wang PH, Huang CF, Geng XH, Jia XL, Huo HJ, Li XP, Zhang JQ (2020) The oil removal and the characteristics of changes in the composition of bacteria based on the oily sludge bioelectrochemical system. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-72405-9

    Article  CAS  Google Scholar 

  18. Wu MS, Xu X, Lu KX, Li XQ (2018) Effects of the presence of nanoscale zero-valent iron on the degradation of polychlorinated biphenyls and total organic carbon by sediment microbial fuel cell. Sci Total Environ 656:39–44. https://doi.org/10.1016/j.scitotenv.2018.11.326

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, Cao X, Li L, Fang Z, Li XN (2018) Augmenting atrazine and hexachlorobenzene degradation under different soil redox conditions in a bioelectrochemistry system and an analysis of the relevant microorganisms. Ecotoxicol Environ Saf 147:735–741. https://doi.org/10.1016/j.ecoenv.2017.09.033

    Article  CAS  PubMed  Google Scholar 

  20. Hamdan ZH, Darine AS (2020) Response of sediment microbial communities to crude oil contamination in marine sediment microbial fuel cells. Environ Pollut 263:114658. https://doi.org/10.1016/j.envpol.2020.114658

    Article  CAS  PubMed  Google Scholar 

  21. Lawan J, Wichai S, Chuaypen C, Nuiyen A, Phenrat T (2021) Constructed sediment microbial fuel cell for treatment of fat, oil, grease (FOG) trap effluent: role of anode and cathode chamber amendment, electrode selection, and scalability. Chemosphere 286:131619. https://doi.org/10.1016/j.chemosphere.2021.131619

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Zhi YY, Chen Y, Shen N, Wang GX, Yan Y (2021) Realignment of phosphorus in lake sediment induced by sediment microbial fuel cells (SMFC). Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.132927

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shi ZY, Luo HQ, Li ZQ, Xiang Y, Wu Y, Yang KM, Guo F (2021) Small boreholes embedded in the sediment layers make big difference in performance of sediment microbial fuel cells: bioelectricity generation and microbial community. Int J Hydrogen Energy 46:30124–30134. https://doi.org/10.1016/j.ijhydene.2021.06.155

    Article  CAS  Google Scholar 

  24. Chen SS, Tang JH, Fu L, Yuan Y, Zhou SG (2016) Biochar improves sediment microbial fuel cell performance in low conductivity freshwater sediment. J Soils Sediments 16:2326–2334. https://doi.org/10.1007/s11368-016-1452-z

    Article  CAS  Google Scholar 

  25. Song TS, Wang DB, Han S, Wu XY, Zhou CC (2014) Influence of biomass addition on electricity harvesting from solid phase microbial fuel cells. Int J Hydrogen Energy 39:1056–1062. https://doi.org/10.1016/j.ijhydene.2013.10.125

    Article  CAS  Google Scholar 

  26. Zhang HK, Zhu DW, Song TS, Ouyang PK, Xie JJ (2015) Effects of the presence of sheet iron in freshwater sediment on the performance of a sediment microbial fuel cell. Int J Hydrogen Energy 40:16566–16571. https://doi.org/10.1016/j.ijhydene.2015.09.045

    Article  CAS  Google Scholar 

  27. Hou JX, Liu ZL, Zhou YZ (2021) Enhancing pollutant removal and electricity generation in sediment microbial fuel cell with nano zero-valent iron. Environ Technol Innov 24:101968. https://doi.org/10.1016/j.eti.2021.101968

    Article  CAS  Google Scholar 

  28. Liang YX, Zhai HY, Liu BY, Ji M, Li J (2014) Carbon nanomaterial-modified graphite felt as an anode enhanced the power production and polycyclic aromatic hydrocarbon removal in sediment microbial fuel cells. Sci Total Environ 258:204–209. https://doi.org/10.1016/j.scitotenv.2019.136483

    Article  CAS  Google Scholar 

  29. Wang ZJ, Lim B (2018) Electric power generation from sediment microbial fuel cells with graphite rod array anode. Environ Eng Res 25:238–242. https://doi.org/10.4491/eer.2018.361

    Article  Google Scholar 

  30. Song TS, Yan ZS, Zhao ZW, Jiang HL (2011) Construction and operation of freshwater sediment microbial fuel cell for electricity generation. Bioprocess Biosyst Eng 34:621–627. https://doi.org/10.1007/s00449-010-0511-x

    Article  CAS  PubMed  Google Scholar 

  31. Taskan B, Taskan E, Hasar H (2020) Electricity generation potential of sewage sludge in sediment microbial fuel cell using Ti-TiO2 electrode. Environ Prog Sustain Energy 39:e13407. https://doi.org/10.1002/ep.13407

    Article  CAS  Google Scholar 

  32. Mei T, Cong C, Huang Q, Song TS, Xie JJ (2020) Effect of 3D carbon electrodes with different pores on solid-phase microbial fuel cell. Energy Fuels 34:16765–16771. https://doi.org/10.1021/acs.energyfuels.0c03591

    Article  CAS  Google Scholar 

  33. Goleij E, Taleghani HG, Lashkenari MS (2021) Modified carbon cloth flexible electrode with ternary nanocomposite for high performance sediment microbial fuel cell. Mater Chem Phys 272:124961. https://doi.org/10.1016/j.matchemphys.2021.124961

    Article  CAS  Google Scholar 

  34. Mishra S, Jyot J, Kuhad RC, Lal B (2001) In situ bioremediation potential of an oily sludge-degrading bacterial consortium. Curr Microbiol 43:328–335. https://doi.org/10.1007/s002840010311

    Article  CAS  PubMed  Google Scholar 

  35. Fu YB, Liu ZH, Su G, Zai XR, Ying M, Yu J (2016) Modified carbon anode by MWCNTs/PANI used in marine sediment microbial fuel cell and its electrochemical performance. Fuel Cells 3:337–383. https://doi.org/10.1002/fuce.201500103

    Article  CAS  Google Scholar 

  36. Farhan P, Prasanta P, Vikash K, Suparna D, Patit PK (2020) Sulfonated graphene oxide and titanium dioxide coated with nanostructured polyaniline nanocomposites as an efficient cathode catalyst in microbial fuel cells. Mater Sci Eng C 108:110498. https://doi.org/10.1016/j.msec.2019.110498

    Article  CAS  Google Scholar 

  37. Wei YC, Chen JX, Wang YG, Meng TT, Li M (2021) Bioremediation of the petroleum contaminated desert steppe soil with Rhodococcus erythropolis KB1 and Its effect on the bacterial communities of the soils. Geomicrobiol J 38:842–849. https://doi.org/10.1080/01490451.2021.1964111

    Article  CAS  Google Scholar 

  38. Ke CY, Chen LY, Qin FL, Sun WJ, Wang SC, Zhang QZ, Zhang XL (2021) Biotreatment of oil sludge containing hydrocarbons by Proteus mirabilis SB. Environ Technol Innov 23:101654. https://doi.org/10.1016/j.eti.2021.101654

    Article  CAS  Google Scholar 

  39. Yu B, Feng L, He Y, Yang L, Xun Y (2021) Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell. J Hazard Mater 401:123394. https://doi.org/10.1016/j.jhazmat.2020.123394

    Article  CAS  PubMed  Google Scholar 

  40. Hamdan ZH, Darine AS (2020) Response of sediment microbial communities to crude oil contamination in marine sediment microbial fuel cells under ferric iron stimulation. Environ Pollut 263:114658. https://doi.org/10.1016/j.envpol.2020.114658

    Article  CAS  PubMed  Google Scholar 

  41. Krishnaveni V, Mallavarapu M, Massimo M, Robin L, Ravi N (2016) Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes. Sci Total Environ 539:61–69. https://doi.org/10.1016/j.scitotenv.2015.08.098

    Article  CAS  Google Scholar 

  42. Li XJ, Li Y, Zhang XL, Sun Y, Weng LP, Li YG (2019) Long-term effect of biochar amendment on the biodegradation of petroleum hydrocarbons in soil microbial fuel cells. Sci Total Environ 651:796–806. https://doi.org/10.1016/j.scitotenv.2018.09.098

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0901300), the National Natural Science Foundation of China (21878150, 22078149); the Major projects of natural science research in Jiangsu Province (15KJA530002); State Key Laboratory of Pollution Control and Resource Reuse Foundation (RCRRF20030); Fund from the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian-shun Song or Jingjing Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Mei, T., Song, Ts. et al. Removal of petroleum hydrocarbon-contaminated soil using a solid-phase microbial fuel cell with a 3D corn stem carbon electrode modified with carbon nanotubes. Bioprocess Biosyst Eng 45, 1137–1147 (2022). https://doi.org/10.1007/s00449-022-02730-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02730-y

Keywords

Navigation