Skip to main content
Log in

Biochar improves sediment microbial fuel cell performance in low conductivity freshwater sediment

  • Sediments, Sec 5 • Sediment Management • Research Article
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Purpose

The low conductivity of sediments for mass and electron transport is the most severe limiting factor in sediment microbial fuel cells (SMFCs), so that sediment ameliorations yielded more remarkable effects than electrode improvements. The objective of this research was to enhance the electricity generation of SMFCs with amendments of biochar to freshwater sediments for conductivity enhancement.

Materials and methods

Laboratory-scale SMFCs were constructed and biochars were produced from coconut shells at different temperatures. Variations in the power output, electrode potential, internal resistance, total organic carbon (TOC) content, and microbial communities were measured.

Results and discussion

Amending with biochar reduced the charge transfer resistances of SMFCs and enriched the Firmicutes (mainly Fusibacter sp.) in the sediment, which improved the SMFC power generation by two- to tenfold and enhanced the TOC removal rate by 1.7- to fourfold relative to those without the amendment.

Conclusions

The results suggested that biochar amendment is a promising strategy to enhance SMFC power production, and the electrical conductivity of biochar should be considered important when interpreting the impact biochar has on the electrical performance of soil or freshwater sediment MFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K (2008) The anode potential regulates bacterial activity in microbial fuel cells. Appl Microbiol Biotechnol 78:409–418

    Article  CAS  Google Scholar 

  • Ailijiang N, Chang J, Liang P, Li P, Wu Q, Zhang X, Huang X (2016) Electrical stimulation on biodegradation of phenol and responses of microbial communities in conductive carriers supported biofilms of the bioelectrochemical reactor. Bioresour Technol 201:1–7

    Article  CAS  Google Scholar 

  • Arends JBA, Blondeel E, Tennison SR, Boon N, Verstraete W (2012) Suitability of granular carbon as an anode material for sediment microbial fuel cells. J Soils Sediments 12:1197–1206

    Article  CAS  Google Scholar 

  • Caporaso JG, Lauber CL, Walterswa B-LD, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the IlluminaHiseq and Miseq platforms. ISME J 6:1621–1624

    Article  CAS  Google Scholar 

  • Chen S, Liu G, Zhang R, Qin B, Luo Y (2012) Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions. Environ Sci Technol 46:2467–2472

    Article  CAS  Google Scholar 

  • Chen S, Rotaru AE, Shrestha PM, Malvankar NS, Liu F, Fan W, Nevin KP, Lovley DR (2014) Promoting interspecies electron transfer with biochar. Sci Rep 4:5019

    CAS  Google Scholar 

  • Domínguez-Garay A, Berná A, Ortiz-Bernad I, Esteve-Núñez A (2013) Silica colloid formation enhances performance of sediment microbial fuel cells in a low conductivity soil. Environ Sci Technol 47:2117–2122

    Article  Google Scholar 

  • Dumas C, Mollica A, Féron D, Basseguy R, Etcheverry L, Bergel A (2008) Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell. Bioresour Technol 99:8887–8894

    Article  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. BioInformatics 26:2460–2461

    Article  CAS  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. BioInformatics 27:2194–2200

    Article  CAS  Google Scholar 

  • Fu J, Mai B, Sheng G, Zhang G, Wang X, Peng P, Xiao X, Ran R, Cheng F, Peng X, Wang Z, Tang UW (2003) Persistent organic pollutants in environment of the Pearl River Delta, China: an overview. Chemosphere 52:1411–1422

    Article  CAS  Google Scholar 

  • Goud RK, Mohan SV (2013) Prolonged applied potential to anode facilitate selective enrichment of bio-electrochemically active Proteobacteria for mediating electron transfer: microbial dynamics and bio-catalytic analysis. Bioresour Technol 137:160–170

    Article  Google Scholar 

  • Huang D, Zhou S, Chen Q, Zhao B, Yuan Y, Zhuang L (2011) Enhanced anaerobic degradation of organic pollutants in a soil microbial fuel cell. Chem Eng J 172:647–653

    Article  CAS  Google Scholar 

  • Huggins TM, Pietron JJ, Wang H, Ren ZJ, Biffinger JC (2015) Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells. Bioresour Technol 195:147–153

    Article  CAS  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeqIllumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    Article  CAS  Google Scholar 

  • Kumar V, Nandy A, Das S, Salahuddin M, Kundu PP (2015) Performance assessment of partially sulfonated PVdF-co-HFP as polymer electrolyte membranes in single chambered microbial fuel cells. Appl Energ 137:310–321

    Article  CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  • Li WW, Yu HQ (2015) Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnol Adv 33:1–12

    Article  Google Scholar 

  • Liu F, Rotaru A, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2012) Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci 5:8982–8989

    Article  CAS  Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  Google Scholar 

  • Lu L, Yazdi H, Jin S, Zuo Y, Fallgren PH, Ren ZJ (2014) Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems. J Hazard Mater 274:8–15

    Article  CAS  Google Scholar 

  • Lu L, Xing D, Ren ZJ (2015) Microbial community structure accompanied with electricity production in a constructed wetland plant microbial fuel cell. Bioresour Technol. doi:10.1016/j.biortech.2015.05.098

    Google Scholar 

  • Malvankar NS, Nevin KP, Franks AE, Leang C, Kim BC, Inoue K, Mester T, Covalla SF, Johnson JP, Rotello VM, Tuominen MT, Lovley DR (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6:573–579

    Article  Google Scholar 

  • Maspolim Y, Zhou Y, Guo C, Xiao K, Ng WJ (2015) The effect of pH on solubilization of organic matter and microbial community structures in sludge fermentation. Bioresour Technol 190:289–298

    Article  CAS  Google Scholar 

  • McDonough PM, Olsta J, Zhu Y, Reible DD, Lowry G (2007) Development and placement of a sorbent-amended thin layer sediment cap in the Anacostia River. Soil Sediment Contam 16:313–322

    Article  CAS  Google Scholar 

  • Mercier A, Joulian C, Michel C, Auger P, Coulon S, Amalric L, Morlay C, Battaglia-Brunet F (2014) Evaluation of three activated carbons for combined adsorption and biodegradation of PCBs in aquatic sediment. Water Res 59:304–315

    Article  CAS  Google Scholar 

  • Mitov M, Bardarov I, Mandjukov P, Hubenova Y (2015) Chemometrical assessment of the electrical parameters obtained by long-term operation freshwater sediment microbial fuel cells. Bioelectrochemistry 106:105–114

    Article  CAS  Google Scholar 

  • Nielsen ME, Reimers CE, Stecher HA (2007) Enhanced power from chambered benthic microbial fuel cells. Environ Sci Technol 41:7895–7900

    Article  CAS  Google Scholar 

  • Reible DD (2014) Processes, assessment and remediation of contaminated sediments. Springer, pp 365–391

  • Ren Z, Ramasamy RP, Cloud-Owen SR, Yan H, Mench MM, Regan JM (2011) Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells. Bioresour Technol 102:416–421

    Article  CAS  Google Scholar 

  • Rotaru AE, Woodard TL, Nevin KP, Lovley DR (2015) Link between capacity for current production and syntrophic growth in Geobacter species. Front Microbiol 6:744

    Article  Google Scholar 

  • Rupela OP, Tauro P (1973) Isolation and characterization of Thiobacillus from alkali soils. Soil Biol Biochem 5:891–897

    Article  CAS  Google Scholar 

  • Sarkar D, Khan GG, Singh AK, Mandal K (2013) High-performance pseudocapacitor electrodes based on α-Fe2O3/MnO2 core-shell nanowire heterostructure arrays. J Phys Chem C 117:15523–15531

    Article  CAS  Google Scholar 

  • Sims JR, Haby VA (1971) Simplified colorimetric determination of soil organic matter. Soil Sci 112:137–141

    Article  CAS  Google Scholar 

  • Song T, Yan Z, Zhao Z, Jiang H (2011) Construction and operation of freshwater sediment microbial fuel cell for electricity generation. Bioprocess Biosyst Eng 34:621–627

    Article  CAS  Google Scholar 

  • Stams AJM, Hansen TA (1984) Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov. sp. nov., an obligate anaerobe isolated from black mud. Studies with pure cultures and mixed cultures with sulfate-reducing and methanogenic bacteria. Arch Microbiol 137:329–337

    Article  CAS  Google Scholar 

  • Sun X, Ghosh U (2007) PCB bioavailability control in Lumbriculus variegatus through different modes of activated carbon addition to sediments. Environ Sci Technol 41:4774–4780

    Article  CAS  Google Scholar 

  • Tang J, Chen S, Yuan Y, Cai X, Zhou S (2015) In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells. Biosens Bioelectron 71:387–395

    Article  CAS  Google Scholar 

  • Vargas M, Malvankar NS, Tremblay PL, Leang C, Smith JA, Patel P, Synoeyenbos-West O, Nevin KP, Lovley DR (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. mBio 4:e00105–e00113

    Article  Google Scholar 

  • Velvizhi G, Venkata Mohan S (2015) Bioelectrogenic role of anoxic microbial anode in the treatment of chemical wastewater: microbial dynamics with bioelectro-characterization. Water Res 70:52–63

    Article  CAS  Google Scholar 

  • Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31:1796–1807

    Article  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:56

    Article  Google Scholar 

  • Yang X, Huang S, Wu Q, Zhang R (2012) Nitrate reduction coupled with microbial oxidation of sulfide in river sediment. J Soils Sediments 12:1435–1444

    Article  CAS  Google Scholar 

  • Yu L, Yuan Y, Tang J, Wang Y, Zhou S (2015) Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Sci Rep. doi:10.1038/srep16221

    Google Scholar 

  • Yuan Y, Zhou S, Liu Y, Tang J (2013) Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environ Sci Technol 47:14525–14532

    Article  CAS  Google Scholar 

  • Zhang Y, Wang X, Li X, Cheng L, Wan L, Zhou Q (2015) Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil. Environ Sci Pollut Res Int 22:2335–2341

    Article  CAS  Google Scholar 

  • Zhou YL, Yang Y, Chen M, Zhao ZW, Jiang HL (2014) To improve the performance of sediment microbial fuel cell through amending colloidal iron oxyhydroxide into freshwater sediments. Bioresour Technol 159:232–239

    Article  CAS  Google Scholar 

  • Zhu D, Wang DB, Song TS, Guo T, Ouyang P, Wei P, Xie J (2015) Effect of carbon nanotube modified cathode by electrophoretic deposition method on the performance of sediment microbial fuel cells. Biotechnol Lett 37:101–107

    Article  CAS  Google Scholar 

  • Zwieten LV, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful for the grants from the Guangdong Natural Science Funds for Distinguished Young Scholars (2014A030306033) and the Science and Technology Planning Project of Guangzhou (2014Y2-00522), which supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shungui Zhou.

Additional information

Responsible editor: Trudy J. Estes

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Tang, J., Fu, L. et al. Biochar improves sediment microbial fuel cell performance in low conductivity freshwater sediment. J Soils Sediments 16, 2326–2334 (2016). https://doi.org/10.1007/s11368-016-1452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11368-016-1452-z

Keywords

Navigation