Skip to main content
Log in

Enhanced production of Bacopa saponins by repeated batch strategy in bioreactor

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Cultivation of cell suspension culture of Bacopa monnieri targeting the production of bacosides was explored in a 5-l stirred tank reactor using statistically optimized conditions. The bioreactor cultivation conditions were modified and this led to profuse biomass growth (2.81 ± 0.20 g/l) and total bacosides (1.26 ± 0.23 mg/g in cells and 0.60 ± 0.11 mg/l in fermenter broth) production in 9 days. The values of static volumetric mass transfer coefficient (kLa), dimensionless mixing time (Nm) were measured in the bioreactor. The culture grew efficiently and produced enhanced amount of bacoside A (5.59 ± 0.41 mg/g total bacosides in cells and 3.12 ± 0.13 mg/l in the fermenter broth) using one cycle of repeated batch strategy adopted in the bioreactor for 15 days. The intracellular concentration of bacoside A3 (1.18 ± 0.11 mg/g), bacopaside II (2.09 ± 0.35 mg/g), bacopaside X (0.79 ± 0.17 mg/g) and bacopasaponin C (2.24 ± 0.23 mg/g) were significantly higher in repeated batch as compared to batch bioreactor cultivation. The yield of total bacosides in the fermenter broth was 5-times higher in repeated batch as compared to batch cultivation. This strategy can be helpful for the enhanced production of other valuable triterpenoid saponins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar N, Abichandani LG, Thawani V, Gharpure KJ, Naidu MUR, Venkat Ramana G (2016) Efficacy of standardized extract of Bacopa monnieri (Bacognize®) on cognitive functions of medical students: a six-week, randomized placebo-controlled trial. Evidence-based Complement Altern Med: eCAM 2016:4103423

    Article  Google Scholar 

  2. Bhatia G, Dhuna V, Dhuna K, Kaur M, Singh J (2017) Bacopa monnieri extracts prevent hydrogen peroxide-induced oxidative damage in a cellular model of neuroblastoma IMR32 cells. Chin J Nat Med 15:834–846

    CAS  PubMed  Google Scholar 

  3. Sinha S, Saxena R (2005) Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieri L. Chemosphere 62:1340–1350

    Article  PubMed  CAS  Google Scholar 

  4. Nemetchek MD, Stierle AA, Stierle DB, Lurie DI (2017) The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain. J Ethnopharmacol 197:92–100

    Article  PubMed  Google Scholar 

  5. Jain P, Khanna NK, Trehan N, Pendse VK, Godhwani JL (1994) Antiinflammatory effects of an Ayurvedic preparation, Brahmi Rasayan, in rodents. Indian J Exp Biol 32:633–636

    CAS  PubMed  Google Scholar 

  6. Uabundit N, Wattanathorn J, Mucimapura S, Ingkaninan K (2010) Cognitive enhancement and neuroprotective effects of Bacopa monnieri in Alzheimer’s disease model. J Ethnopharmacol 127:26–31

    Article  PubMed  Google Scholar 

  7. Jadiya P, Khan A, Sammi SR, Kaur S, Mir SS, Nazir A (2011) Anti-Parkinsonian effects of Bacopa monnieri: insights from transgenic and pharmacological Caenorhabditis elegans models of Parkinson’s disease. Biochem Biophys Res Commun 413:605–610

    Article  CAS  PubMed  Google Scholar 

  8. Mishra A, Mishra AK, PrakashTiwari O, Jha S (2015) Pharmacognostic, physicochemical and phytochemical investigation of Bacopa monnieri L. stem and its anticonvulsant potential in laboratory animals. Int J Epilepsy 2:19–27

    Article  Google Scholar 

  9. Banerjee M, Shrivastava S (2008) An improved protocol for in vitro multiplication of Bacopa monnieri (L.). World J Microbiol Biotechnol 24:1355–1359

    Article  CAS  Google Scholar 

  10. Sivaramakrishna C, Rao CV, Trimurtulu G, Vanisree M, Subbaraju GV (2005) Triterpenoid glycosides from Bacopa monnieri. Phytochemistry 66:2719–2728

    Article  CAS  PubMed  Google Scholar 

  11. Malishev R, Shaham-Niv S, Nandi S, Kolusheva S, Gazit E, Jelinek R (2017) Bacoside-A, an Indian traditional-medicine substance, inhibits β-amyloid cytotoxicity, fibrillation, and membrane interactions. ACS Chem Neurosci 8:884–891

    Article  CAS  PubMed  Google Scholar 

  12. Pawar R, Gopalakrishnan C, Bhutani KK (2001) Dammarane triterpene saponin from Bacopa monniera as the superoxide inhibitor in polymorphonuclear cells. Planta Med 67:752–754

    Article  CAS  PubMed  Google Scholar 

  13. Rastogi S, Pal R, Kulshreshtha DK (1994) Bacoside A3—a triterpenoid saponin from Bacopa monniera. Phytochemistry 36:133–137

    Article  CAS  PubMed  Google Scholar 

  14. Ramasamy S, Chin SP, Sukumaran SD, Buckle MJC, Kiew LV, Chung LY (2015) In silico and in vitro analysis of Bacoside A Aglycones and its derivatives as the constituents responsible for the cognitive effects of Bacopa monnieri. PLoS ONE 10:e0126565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Garai S, Mahato SB, Ohtani K, Yamasaki K (1996) Dammarane-type triterpenoid saponins from Bacopa monniera. Phytochemistry 42:815–820

    Article  CAS  PubMed  Google Scholar 

  16. Garai S, Mahato SB, Ohtani K, Yamasaki K (1996) Bacopasaponin D-A pseudojujubogenin glycoside from Bacopa monniera. Phytochemistry 43:447–449

    Article  CAS  PubMed  Google Scholar 

  17. Chakravarty AK, Sarkar T, Masuda K, Shiojima K, Nakane T, Kawahara N (2001) Bacopaside I and II: two pseudojujubogenin glycosides from Bacopa monniera. Phytochemistry 58:553–556

    Article  CAS  PubMed  Google Scholar 

  18. Tothiam C, Phrompittayarat W, Putalun W, Tanaka H, Sakamoto S, Khan IA et al (2011) An enzyme-linked immunosorbant assay using monoclonal antibody against bacoside A3 for determination of Jujubogenin Glycosides in Bacopa monnieri (L.) Wettst. Phytochem Anal 22:385–391

    Article  CAS  PubMed  Google Scholar 

  19. Praveen N, Naik PM, Manohar SH, Nayeem A, Murthy HN (2021) In vitro regeneration of brahmi shoots using semisolid and liquid cultures and quantitative analysis of bacoside A. Acta Physiol Plant 31:723–728

    Article  CAS  Google Scholar 

  20. Praveen N, Naik PM, Manohar SH, Nayeem A, Murthy HN (2009) In vitro regeneration of brahmi shoots using semisolid and liquid cultures and quantitative analysis of bacoside A. Acta Physiol Plant 31:723–728

    Article  CAS  Google Scholar 

  21. Majumdar S, Garai S, Jha S (2011) Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopa saponins in transformed calli and plants. Plant Cell Rep 30:941–954

    Article  CAS  PubMed  Google Scholar 

  22. Tiwari V, Tiwari KN, Singh BD (2001) Comparative studies of cytokinins on in vitro propagation of Bacopa monniera. Plant Cell Tiss Organ Cult 66:9–16

    Article  CAS  Google Scholar 

  23. Jain N, Sharma V, Ramawat KG (2012) Shoot culture of Bacopa monnieri: standardization of explant, vessels and bioreactor for growth and antioxidant capacity. Physiol Mol Biol Plants 18:185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharma M, Gupta RK, Khajuria RK, Mallubhotla S, Ahuja A (2015) Bacoside biosynthesis during in vitro shoot multiplication in Bacopa monnieri (L.) Wettst. grown in Growtek and air lift bioreactor. Indian J Biotechnol 14:547–551

    CAS  Google Scholar 

  25. Leonard J, Seth B, Sahu BB, Singh VR, Patra N (2018) Statistical optimization for enhanced bacoside A production in plant cell cultures of Bacopa monnieri. Plant Cell, Tissue Organ Cult 133:203–214

    Article  CAS  Google Scholar 

  26. Seth B, Sahoo KK, Aravind KR, Sahu BB, Singh VR, Patra N (2020) Statistical optimization of bacoside A biosynthesis in plant cell suspension cultures using response surface methodology. 3 Biotech 10:264

    Article  PubMed  PubMed Central  Google Scholar 

  27. Patra N, Srivastava AK (2015) Use of model-based nutrient feeding for improved production of Artemisinin by hairy roots of Artemisia annua in a modified stirred tank bioreactor. Appl Biochem Biotechnol 177:373–388

    Article  CAS  PubMed  Google Scholar 

  28. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  29. Prakash G, Srivastava AK (2007) Azadirachtin production in stirred tank reactors by Azadirachta indica suspension culture. Process Biochem 42:93–97

    Article  CAS  Google Scholar 

  30. Miller GH (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  31. Cataldo DA, Haroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant-tissue by nitration of salicylic-acid. Commun Soil Sci Plan 6:71–80

    Article  CAS  Google Scholar 

  32. Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural systems. Anal Chem Acta 27:31–36

    Article  CAS  Google Scholar 

  33. Brunner I, Brodbeck S, Walthert L (2002) Fine root chemistry, starch concentration, and “vitality” of subalpine conifer forests in relation to soil pH. Forest Ecol Manag 165:75–84

    Article  Google Scholar 

  34. Deepak M, Sangli GK, Arun PC, Amit A (2005) Quantitative determination of the major saponin mixture bacoside A in Bacopa monnieri by HPLC. Phytochem Anal 16:24–29

    Article  CAS  PubMed  Google Scholar 

  35. Fan MZ, An XL, Cui XH, Jiang XL, Piao XC, Jin MY et al (2021) Production of eurycomanone and polysaccharides through adventitious root culture of Eurycoma longifolia in a bioreactor. Biochem Eng J 171:108013

    Article  CAS  Google Scholar 

  36. Eibl R, Werner S, Eibl D (2010) Bag bioreactor based on wave-induced motion: characteristics and applications. Adv Biochem Eng Biotechnol 115:55–87

    Google Scholar 

  37. Saad KR, Parvatam G, Shetty NP (2018) Medium composition potentially regulates the anthocyanin production from suspension culture of Daucus carota. 3 Biotech 8:134

    Article  PubMed  PubMed Central  Google Scholar 

  38. Długosz M, Markowski M, Pączkowski C (2018) Source of nitrogen as a factor limiting saponin production by hairy root and suspension cultures of Calendula officinalis L. Acta Physiol Plant 40:35

    Article  CAS  Google Scholar 

  39. Patra N, Srivastava AK (2014) Enhanced production of Artemisinin by hairy root cultivation of Artemisia annua in a modified stirred tank reactor. Appl Biochem Biotechnol 174:2209–2222

    Article  CAS  PubMed  Google Scholar 

  40. Salazar-Magallón JA, Huerta de la Peña A (2020) Production of antifungal saponins in an airlift bioreactor with a cell line transformed from Solanum chrysotrichum and its activity against strawberry phytopathogens. Prep Biochem Biotechnol 50:204–214

    Article  PubMed  CAS  Google Scholar 

  41. Koul A, Mallubhotla S (2020) Elicitation and enhancement of bacoside production using suspension cultures of Bacopa monnieri (L.) Wettst. 3 Biotech 10:256

    Article  PubMed  PubMed Central  Google Scholar 

  42. Srivastava S, Srivastava AK (2012) Azadirachtin production by hairy root cultivation of Azadirachta indica in a modified stirred tank reactor. Bioproc Biosyst Eng 35:1549–1553

    Article  CAS  Google Scholar 

  43. Thakore D, Srivastava AK, Sinha AK (2017) Mass production of Ajmalicine by bioreactor cultivation of hairy roots of Catharanthus roseus. Biochem Eng J 119:84–91

    Article  CAS  Google Scholar 

  44. Thakore D, Srivastava AK, Sinha AK (2015) Model based fed batch cultivation and elicitation for the overproduction of ajmalicine from hairy roots of Catharanthus roseus. Biochem Eng J 97:73–80

    Article  CAS  Google Scholar 

  45. Naik PM, Manohar SH, Praveen N, Murthy HN (2010) Effects of sucrose and pH levels on in vitro shoot regeneration from leaf explants of Bacopa monnieri and accumulation of bacoside A in regenerated shoots. Plant Cell, Tissue Organ Cult 100:235–239

    Article  Google Scholar 

  46. Zhang Y-H, Zhong J-J, Yu J-T (1996) Enhancement of ginseng saponin production in suspension cultures of Panax notoginseng: manipulation of medium sucrose. J Biotechnol 51:49–56

    Article  CAS  Google Scholar 

  47. Narayani M, Chadha A, Srivastava S (2017) Callus and cell suspension culture of Viola odorata as in vitro production platforms of known and novel cyclotides. Plant Cell, Tissue Organ Cult 130:289–299

    Article  CAS  Google Scholar 

  48. Wu J, Zhong J-J (1999) Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects. J Biotechnol 68:89–99

    Article  CAS  PubMed  Google Scholar 

  49. Huang C, Qian Z-G, Zhong J-J (2013) Enhancement of ginsenoside biosynthesis in cell cultures of Panax ginseng by N, N′-dicyclohexylcarbodiimide elicitation. J Biotechnol 165:30–36

    Article  CAS  PubMed  Google Scholar 

  50. Raval KN, Hellwig S, Prakash G, Ramos-Plasencia A, Srivastava A, Buchs J (2003) Necessity of a two-stage process for the production of azadirachtin-related limonoids in suspension cultures of Azadirachta indica. J Biosci Bioeng 96:16–22

    Article  CAS  PubMed  Google Scholar 

  51. Kaur G, Srivastava AK, Chand S (2012) Mathematical modelling approach for concentration and productivity enhancement of 1,3-propanediol using Clostridium diolis. Biochem Eng J 68:34–41

    Article  CAS  Google Scholar 

  52. Lipsky A (1992) Problems of optimisation of plant cell culture processes. J Biotechnol 26:83–97

    Article  PubMed  Google Scholar 

  53. Zhang ZY, Zhong JJ (2004) Scale-up of centrifugal impeller bioreactor for hyperproduction of ginseng saponin and polysaccharide by high-density cultivation of panax notoginseng cells. Biotechnol Prog 20:1076–1081

    Article  CAS  PubMed  Google Scholar 

  54. Mathur A, Shukla YN, Pal M, Ahuja PS, Uniyal GC (1994) Saponin production in callus and cell suspension cultures of Panax quinquefolium. Phytochemistry 35:1221–1225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CSIR-CIMAP for providing plants of high yielding cultivar of Bacopa monnieri. The authors would like to thank Ministry of Education (Government of India) for providing the masters fellowship for this work to one of the authors (KKS).

Author information

Authors and Affiliations

Authors

Contributions

Krishna K. Sahoo and Nivedita Patra performed all the experimental work for this study. Binod B. Sahu and Ved R. Singh were the collaborators for this work and provided resources for this work. Nivedita Patra was the supervisor of Krishna K. Sahoo and also provided guidance for this work.

Corresponding author

Correspondence to Nivedita Patra.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 282 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, K.K., Sahu, B.B., Singh, V.R. et al. Enhanced production of Bacopa saponins by repeated batch strategy in bioreactor. Bioprocess Biosyst Eng 45, 829–841 (2022). https://doi.org/10.1007/s00449-022-02700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02700-4

Keywords

Navigation