Skip to main content
Log in

Comparative performance and reusability studies of lipases on syntheses of octyl esters with an economic approach

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A suitable immobilized lipase for esters syntheses should be selected considering not only its cost. We evaluated five biocatalysts in syntheses of octyl caprylate, octyl caprate, and octyl laurate, in which conversions higher than 90% were achieved. Novozym® 435 and non-commercial preparations (including a dry fermented solid) were selected for short-term octyl laurate syntheses using different biocatalysts loadings. By increasing the biocatalyst’s loading the lipase’s reusability also raised, but without strict proportionality, which resulted in a convergence between the lowest biocatalyst loading and the lowest cost per batch. The use of a dry fermented solid was cost-effective, even using loadings as high as 20.0% wt/wt due to its low obtaining cost, although exhibiting low productiveness. The combination of biocatalyst’s cost, esterification activity, stability, and reusability represents proper criteria for the choice. This kind of assessment may help to establish quantitative goals to improve or to develop new biocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Eby JM, Peretti SW (2015) Performance in synthetic applications of a yeast surface display-based biocatalyst. RSC Adv 5:30425–30432. https://doi.org/10.1039/C5RA04039F

    Article  CAS  Google Scholar 

  2. de Lima LN, Mendes AA, Fernandez-Lafuente R et al (2018) Performance of different immobilized lipases in the syntheses of short- and long-chain carboxylic acid esters by esterification reactions in organic media. Molecules. https://doi.org/10.3390/molecules23040766

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sá AGA, de Meneses AC, de Araújo PHH, de Oliveira D (2017) A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends Food Sci Technol 69:95–105. https://doi.org/10.1016/j.tifs.2017.09.004

    Article  CAS  Google Scholar 

  4. Thangaraj B, Solomon PR (2019) Immobilization of lipases—a review Part I: enzyme immobilization. ChemBioEng Rev 6:157–166. https://doi.org/10.1002/cben.201900016

    Article  CAS  Google Scholar 

  5. Martínez-Sanchez JA, Arana-Peña S, Carballares D et al (2020) Immobilized biocatalysts of eversa® transform 2.0 and lipase from Thermomyces lanuginosus: comparison of some properties and performance in biodiesel production. Catalysts 10:1–19. https://doi.org/10.3390/catal10070738

    Article  CAS  Google Scholar 

  6. Barsé LQ, Graebin NG, Cipolatti EP et al (2018) Production and optimization of isopropyl palmitate via biocatalytic route using home-made enzymatic catalysts. J Chem Technol Biotechnol 94:389–397. https://doi.org/10.1002/jctb.5782

    Article  CAS  Google Scholar 

  7. Zdarta J, Meyer AS, Jesionowski T, Pinelo M (2018) A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts. https://doi.org/10.3390/catal8020092

    Article  Google Scholar 

  8. Reis C, Yvay E, De Sousa A et al (2019) Design of immobilzed enzyme biocatalyst: drawbacks and opportinities. Quim Nova 42:768–783

    CAS  Google Scholar 

  9. Arana-Peña S, Carballares D, Berenguer-Murcia Á et al (2020) One pot use of combilipases for full modification of oils and fats: multifunctional and heterogeneous substrates. Catalysts 10:605

    Article  Google Scholar 

  10. Ansorge-Schumacher MB, Thum O (2013) Immobilised lipases in the cosmetics industry. Chem Soc Rev 42:6475–6490. https://doi.org/10.1039/c3cs35484a

    Article  CAS  PubMed  Google Scholar 

  11. Eby JM, Peretti SW (2015) Characterization, performance, and applications of a yeast surface display-based biocatalyst. RSC Adv 5:19166–19175. https://doi.org/10.1039/C4RA16304D

    Article  CAS  Google Scholar 

  12. Khan NR, Rathod VK (2015) Enzyme catalyzed synthesis of cosmetic esters and its intensification: a review. Process Biochem 50:1793–1806. https://doi.org/10.1016/j.procbio.2015.07.014

    Article  CAS  Google Scholar 

  13. Ortiz C, Ferreira ML, Barbosa O et al (2019) Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 9:2380–2420. https://doi.org/10.1039/c9cy00415g

    Article  CAS  Google Scholar 

  14. Rodrigues RC, Fernandez-Lafuente R (2010) Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. J Mol Catal B Enzym 66:15–32. https://doi.org/10.1016/j.molcatb.2010.03.008

    Article  CAS  Google Scholar 

  15. Robert JM, Lattari FS, Machado AC et al (2017) Production of recombinant lipase B from Candida antarctica in Pichia pastoris under control of the promoter PGK using crude glycerol from biodiesel production as carbon source. Biochem Eng J 118:123–131. https://doi.org/10.1016/j.bej.2016.11.018

    Article  CAS  Google Scholar 

  16. Cipolatti EP, Pinto MCC, de Robert J, M, et al (2018) Pilot-scale development of core–shell polymer supports for the immobilization of recombinant lipase B from Candida antarctica and their application in the production of ethyl esters from residual fatty acids. J Appl Polym Sci 135:1–13. https://doi.org/10.1002/app.46727

    Article  CAS  Google Scholar 

  17. Manoel EA, Robert JM, Pinto MCC et al (2016) Evaluation of the performance of differently immobilized recombinant lipase B from Candida antarctica preparations for the synthesis of pharmacological derivatives in organic media. RSC Adv 6:4043–4052. https://doi.org/10.1039/c5ra22508f

    Article  CAS  Google Scholar 

  18. Friedrich JLR, Peña FP, Garcia-Galan C et al (2012) Effect of immobilization protocol on optimal conditions of ethyl butyrate synthesis catalyzed by lipase B from Candida antarctica. J Chem Technol Biotechnol 88:1089–1095. https://doi.org/10.1002/jctb.3945

    Article  CAS  Google Scholar 

  19. Pinto MCC, de Souza e Castro NL, Cipolatti EP et al (2019) Effects of reaction operation policies on properties of core-shell polymer supports used for preparation of highly active biocatalysts. Macromol React Eng 13:1–14. https://doi.org/10.1002/mren.201800055

    Article  CAS  Google Scholar 

  20. Cipolatti EP, Valério A, Henriques RO et al (2020) Production of new nanobiocatalysts via immobilization of lipase B from C. antarctica on polyurethane nanosupports for application on food and pharmaceutical industries. Int J Biol Macromol 165:2957–2963. https://doi.org/10.1016/j.ijbiomac.2020.10.179

    Article  CAS  PubMed  Google Scholar 

  21. Gawlitza K, Wu C, Georgieva R, Wang D (2012) Immobilization of lipase B within micron-sized poly- N -isopropylacrylamide hydrogel particles by solvent exchange. Phys Chem Chem Phys. https://doi.org/10.1039/c2cp40624a

    Article  PubMed  Google Scholar 

  22. Graebin NG, Martins AB, Lorenzoni ASG et al (2012) Immobilization of lipase B from Candida antarctica on porous styrene-divinylbenzene beads improves butyl acetate synthesis. Biotechnol Prog 28:406–412. https://doi.org/10.1002/btpr.1508

    Article  CAS  PubMed  Google Scholar 

  23. Garlapati VK, Banerjee R (2013) Solvent-free synthesis of flavour esters through immobilized lipase mediated transesterification. Enzyme Res. https://doi.org/10.1155/2013/367410

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu Z, Qi W, Wang M et al (2014) Lipase immobilized on novel ceramic supporter with Ni activation for efficient cinnamyl acetate synthesis. J Mol Catal B Enzym 110:32–38. https://doi.org/10.1016/j.molcatb.2014.09.010

    Article  CAS  Google Scholar 

  25. Todero LM, Bassi JJ, Lage FAP et al (2015) Enzymatic synthesis of isoamyl butyrate catalyzed by immobilized lipase on poly-methacrylate particles: optimization, reusability and mass transfer studies. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-015-1402-y

    Article  PubMed  Google Scholar 

  26. Dewei S, Min C, Haiming C (2016) Collagen-immobilized lipases show good activity and reusability for butyl butyrate synthesis. Appl Biochem Biotechnol 180:826–840. https://doi.org/10.1007/s12010-016-2136-2

    Article  CAS  PubMed  Google Scholar 

  27. Kartal F (2016) Enhanced esterification activity through interfacial activation and cross-linked immobilization mechanism of Rhizopus oryzae lipase in a nonaqueous medium. Biotechnol Prog 32:899–904. https://doi.org/10.1002/btpr.2288

    Article  CAS  PubMed  Google Scholar 

  28. Kavadia M, Yadav M, Odaneth AA, Lali AM (2017) Production of glyceryl monostearate by immobilized candida antarctica B lipase in organic media. J Appl Biotechnol Bioeng 2:10–12. https://doi.org/10.15406/jabb.2017.02.00031

    Article  Google Scholar 

  29. Aguieiras ECG, Cavalcanti-Oliveira ED, De Castro AM et al (2014) Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel 135:315–321. https://doi.org/10.1016/j.fuel.2014.06.069

    Article  CAS  Google Scholar 

  30. Aguieiras ECG, de Barros DSN, Sousa H et al (2017) Influence of the raw material on the final properties of biodiesel produced using lipase from Rhizomucor miehei grown on babassu cake as biocatalyst of esterification reactions. Renew Energy 113:112–118. https://doi.org/10.1016/j.renene.2017.05.090

    Article  CAS  Google Scholar 

  31. Alves MD, Cren ÉC, Mendes AA (2016) Kinetic, thermodynamic, optimization and reusability studies for the enzymatic synthesis of a saturated wax ester. J Mol Catal B Enzym 133:S377–S387. https://doi.org/10.1016/j.molcatb.2017.02.011

    Article  CAS  Google Scholar 

  32. Mahapatra P, Kumari A, Kumar V (2009) Enzymatic synthesis of fruit flavor esters by immobilized lipase from Rhizopus oligosporus optimized with response surface methodology. J Mol Catal B Enzym 60:57–63. https://doi.org/10.1016/j.molcatb.2009.03.010

    Article  CAS  Google Scholar 

  33. Martins AB, Graebin NG, Lorenzoni ASG et al (2011) Rapid and high yields of synthesis of butyl acetate catalyzed by Novozym 435: reaction optimization by response surface methodology. Process Biochem 46:2311–2316. https://doi.org/10.1016/j.procbio.2011.09.011

    Article  CAS  Google Scholar 

  34. Kuperkar VV, Lade VG, Prakash A, Rathod VK (2014) Synthesis of isobutyl propionate using immobilized lipase in a solvent free system: optimization and kinetic studies. J Mol Catal B Enzym 99:143–149. https://doi.org/10.1016/j.molcatb.2013.10.024

    Article  CAS  Google Scholar 

  35. Raghavendra T, Panchal N, Divecha J et al (2014) Biocatalytic synthesis of flavor ester “pentyl valerate” using Candida rugosa lipase immobilized in microemulsion based organogels: effect of parameters and reusability. Biomed Res Int. https://doi.org/10.1155/2014/353845

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mulalee S, Srisuwan P, Phisalaphong M (2015) Influences of operating conditions on biocatalytic activity and reusability of Novozym 435 for esterification of free fatty acids with short-chain alcohols: a case study of palm fatty acid distillate. Chin J Chem Eng 23:1851–1856. https://doi.org/10.1016/j.cjche.2015.08.016

    Article  CAS  Google Scholar 

  37. Patel V, Gajera H, Gupta A et al (2015) Synthesis of ethyl caprylate in organic media using Candida rugosa lipase immobilized on exfoliated graphene oxide: Process parameters and reusability studies. Biochem Eng J 95:62–70. https://doi.org/10.1016/j.bej.2014.12.007

    Article  CAS  Google Scholar 

  38. Vadgama RN, Odaneth AA, Lali AM (2015) Green synthesis of isopropyl myristate in novel single phase medium Part I: batch optimization studies. Biotechnol Rep 8:133–137. https://doi.org/10.1016/j.btre.2015.10.006

    Article  Google Scholar 

  39. Aguieiras ECG, Ribeiro DS, Couteiro PP et al (2016) Investigation of the reuse of immobilized lipases in biodiesel synthesis: influence of different solvents in lipase activity. Appl Biochem Biotechnol 179:485–496. https://doi.org/10.1007/s12010-016-2008-9

    Article  CAS  PubMed  Google Scholar 

  40. Rodrigues RC, Ayub MAZ (2011) Effects of the combined use of Thermomyces lanuginosus and Rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil. Process Biochem 46:682–688. https://doi.org/10.1016/j.procbio.2010.11.013

    Article  CAS  Google Scholar 

  41. Serrano-Arnaldos M, Montiel MC, Ortega-Requena S et al (2019) Development and economic evaluation of an eco-friendly biocatalytic synthesis of emollient esters. Bioprocess Biosyst Eng 43:495–505. https://doi.org/10.1007/s00449-019-02243-1

    Article  CAS  PubMed  Google Scholar 

  42. Lopresto GC, Calabrò V, Woodley JM, Tufvesson P (2014) Enzymatic kinetic study on the enzymatic esterification of octanoic acid and hexanol by immobilized Candida antarctica lipase B. J Mol Catal B Enzym 110:64–71. https://doi.org/10.1016/j.molcatb.2014.09.011

    Article  CAS  Google Scholar 

  43. Cecchini J, Issberner U (2010) Silicone Alternatives In Personal Care. In: Happi. https://www.happi.com/issues/2010-11/view_features/silicone-alternatives-in-personal-care/. Accessed 25 Feb 2021

  44. Lodén M, Maibach HI (2012) Treatment of dry skin syndrome: the art and science of moisturizers. Treat Dry Ski Syndr Art Sci Moisturizers. https://doi.org/10.1007/978-3-642-27606-4

    Article  Google Scholar 

  45. Basf CETIOL ® C 5C A nature-based emollient with sensory appeal. https://www.carecreations.basf.com/concepts-trends/concepts/silicone-alternatives/cetiol-c-5. Accessed 21 Feb 2021

  46. (2020) Patentscope/WIPO. https://patentscope.wipo.int/search/en/result.jsf?_vid=P10-KLKWGO-87642. Accessed 18 Aug 2020

  47. Garcia T, Sanchez N, Martinez M, Aracil J (1999) Enzymatic synthesis of fatty esters Part I. Kinetic approach. Enzyme Microb Technol 25:584–590

    Article  CAS  Google Scholar 

  48. Halling PJ (1994) Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis. Enzyme Microb Technol 16:178–206. https://doi.org/10.1016/0141-0229(94)90043-4

    Article  CAS  PubMed  Google Scholar 

  49. Sousa RR, Silva AS, Fernandez-Lafuente R, Ferreira-Leitão VS (2021) Solvent-free esterifications mediated by immobilized lipases: a review from thermodynamic and kinetics perspective Solvent-free esterifications mediated by immobilized lipases: a review from thermodynamic and kinetics perspective. Catal Sci Technol. https://doi.org/10.1039/D1CY00696G

    Article  Google Scholar 

  50. De Freitas VO, Matte CR, Poppe JK et al (2019) Ultrasound-assisted transesterification of soybean oil using combi-lipase biocatalysts. Braz J Chem Eng 36:995–1005. https://doi.org/10.1590/0104-6632.20190362s20180455

    Article  CAS  Google Scholar 

  51. Souza MS, Aguieiras ECG, Da Silva MAP, Langone MAP (2009) Biodiesel synthesis via esterification of feedstock with high content of free fatty acids. Appl Biochem Biotechnol 154:253–267. https://doi.org/10.1007/s12010-008-8444-4

    Article  CAS  Google Scholar 

  52. Sousa RR, Pazutti LVB, Dalmaso GZL et al (2020) A practical approach to obtain high yield lipase-mediated synthesis of octyl caprylate with Novozym 435. Biocatal Biotransform. https://doi.org/10.1080/10242422.2020.1739025

    Article  Google Scholar 

  53. Brito e Cunha DA, Bartkevihi L, Robert JM et al (2019) Structural differences of commercial and recombinant lipase B from Candida antarctica: an important implication on enzymes thermostability. Int J Biol Macromol 140:761–770. https://doi.org/10.1016/j.ijbiomac.2019.08.148

    Article  CAS  PubMed  Google Scholar 

  54. Cabrera Z, Fernandez-Lorente G, Fernandez-Lafuente R et al (2009) Novozym 435 displays very different selectivity compared to lipase from Candida antarctica B adsorbed on other hydrophobic supports. J Mol Catal B Enzym 57:171–176. https://doi.org/10.1016/j.molcatb.2008.08.012

    Article  CAS  Google Scholar 

  55. Ghamgui H, Karra-chaabouni M, Bezzine S et al (2006) Production of isoamyl acetate with immobilized Staphylococcus simulans lipase in a solvent-free system. Enzyme Microb Technol 38:788–794. https://doi.org/10.1016/j.enzmictec.2005.08.011

    Article  CAS  Google Scholar 

  56. Flores MV, Sewalt JJW, Janssen AEM, Van Der Padt A (2000) The nature of fatty acid modifies the equilibrium position in the esterification catalyzed by lipase. Biotechnol Bioeng 67:364–371. https://doi.org/10.1002/(SICI)1097-0290(20000205)67:3%3c364::AID-BIT13%3e3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  57. Mustafa A, Karmali A, Abdelmoez W (2016) Optimisation and economic assessment of lipase-catalysed production of monoesters using Rhizomucor miehei lipase in a solvent-free system. J Clean Prod 137:953–964. https://doi.org/10.1016/j.jclepro.2016.07.056

    Article  CAS  Google Scholar 

  58. Aljawish A, Heuson E, Bigan M, Froidevaux R (2019) Lipase catalyzed esterification of formic acid in solvent and solvent-free systems. Biocatal Agric Biotechnol 20:101221. https://doi.org/10.1016/j.bcab.2019.101221

    Article  Google Scholar 

  59. Lopresto CG, De Paola MG, Albo L et al (2019) Comparative analysis of immobilized biocatalyst: study of process variables in trans-esterification reaction. 3 Biotech 9:1–12. https://doi.org/10.1007/s13205-019-1985-0

    Article  Google Scholar 

  60. Chen HC, Kuo CH, Tsai WC et al (2012) Product selectivity and optimization of lipase-catalyzed 1,3-propylene glycol esters by mixture design and RSM. JAOCS J Am Oil Chem Soc 89:231–241. https://doi.org/10.1007/s11746-011-1914-9

    Article  CAS  Google Scholar 

  61. Collaço ACA, Aguieiras ECG, Santos JG et al (2020) Experimental study and preliminary economic evaluation of enzymatic biodiesel production by an integrated process using co-products from palm (Elaeais guineensis Jaquim) industry. Ind Crops Prod 157:112904. https://doi.org/10.1016/j.indcrop.2020.112904

    Article  CAS  Google Scholar 

  62. Vijayaraghavan P, Lee S (1993) Mini-pilot plant design and operation of a liquid entrained reactor for liquid phase methanol. Fuel Sci Technol Int 11:243–268. https://doi.org/10.1080/08843759308916066

    Article  CAS  Google Scholar 

  63. Cybulski A, Stankiewicz A, Edvinsson Albers RK, Moulijn JA (1999) Monolithic reactors for fine chemicals industries: a comparative analysis of a monolithic reactor and a mechanically agitated slurry reactor. Chem Eng Sci 54:2351–2358. https://doi.org/10.1016/S0009-2509(98)00350-9

    Article  CAS  Google Scholar 

  64. Hagen LH, Vivekanand V, Linjordet R et al (2014) Microbial community structure and dynamics during co-digestion of whey permeate and cow manure in continuous stirred tank reactor systems. Bioresour Technol 171:350–359. https://doi.org/10.1016/j.biortech.2014.08.095

    Article  CAS  PubMed  Google Scholar 

  65. Baum S, Mueller JJ, Hilterhaus L et al (2016) The bubble column reactor: a novel reactor type for cosmetic esters. Appl Biocatal From Fundam Sci to Ind Appl. https://doi.org/10.1002/9783527677122.ch15

    Article  Google Scholar 

  66. Aguieiras ECG, de Barros DSN, Roberto Fernandez- Lafuente, Freire DMG (2019) Production of lipases in cottonseed meal and application of the fermented solid as biocatalyst in esterification and transesterification reactions. Renewable Energy 130574–581. https://doi.org/10.1016/j.renene.2018.06.095

  67. Ávila SNS, Gutarra MLE, Roberto Fernandez- Lafuente, Cavalcanti EDC et al (2019) Multipurpose fixed-bed bioreactor to simplify lipase production by solid-state fermentation and application in biocatalysis. Biochem Eng J 1441–7. https://doi.org/10.1016/j.bej.2018.12.024

  68. Glauco Silva, Dias Luiz Fernando de Lima, Luz Jr. David Alexander, Mitchell Nadia, Krieger (2017) Scale-up of biodiesel synthesis in a closed-loop packed-bed bioreactor system using the fermented solid produced by Burkholderia lata LTEB11. Chem Eng J 316341–349. https://doi.org/10.1016/j.cej.2017.01.106

    Article  CAS  Google Scholar 

  69. Luana Oliveira, Pitol Anelize Terezinha Jung, Finkler Glauco Silva, Dias Amanda Souza, Machado Gisella Maria, Zanin David Alexander, Mitchell Nadia, Krieger (2017) Optimization studies to develop a low-cost medium for production of the lipases of Rhizopus microsporus by solid-state fermentation and scale-up of the process to a pilot packed-bed bioreactor. Process Biochemistry 6237–47. https://doi.org/10.1016/j.procbio.2017.07.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq (National Council for Scientific and Technological Development—Brazil), FAPERJ (Fundação Carlos Chagas Filho de Apoio à Pesquisa do Estado do Rio de Janeiro) and MCTI (Ministry of Science, Technology, and Innovations—Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viridiana Santana Ferreira-Leitão.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa, R.R., Pinto, M.C., Aguieiras, E.C.G. et al. Comparative performance and reusability studies of lipases on syntheses of octyl esters with an economic approach. Bioprocess Biosyst Eng 45, 131–145 (2022). https://doi.org/10.1007/s00449-021-02646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02646-z

Keywords

Navigation