Skip to main content
Log in

Biodiesel Synthesis via Esterification of Feedstock with High Content of Free Fatty Acids

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this work was to study the synthesis of ethyl esters via esterification of soybean oil deodorizer distillate with ethanol, using solid acid catalysts and commercial immobilized lipases, in a solvent-free system. Three commercially immobilized lipases were used, namely, Lipozyme RM-IM, Lipozyme TL-IM, and Novozym 435, all from Novozymes. We aimed for optimum reaction parameters: temperature, enzyme concentration, initial amount of ethanol, and its feeding technique to the reactor (stepwise ethanolysis). Reaction was faster with Novozym 435. The highest conversion (83.5%) was obtained after 90 min using 3 wt.% of Novozym 435 and two-stage stepwise addition of ethanol at 50°C. Four catalysts were also tested: zeolite CBV-780, SAPO-34, niobia, and niobic acid. The highest conversion (30%) was obtained at 100°C, with 3 wt.% of CBV-780 after 2.5 h. The effects of zeolite CBV 780 concentration were studied, resulting in a conversion of 49% using 9 wt.% of catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Meher, L. C., Sagar, D. V., & Naik, S. N. (2006). Renewable and Sustainable Energy Reviews, 10, 248–268. doi:10.1016/j.rser.2004.09.002.

    Article  CAS  Google Scholar 

  2. Bournay, L., Casanave, D., Delfort, B., Hillion, G., & Chodorge, J. A. (2005). Catalysis Today, 106, 190–192. doi:10.1016/j.cattod.2005.07.181.

    Article  CAS  Google Scholar 

  3. Wang, L., Du, W., Liu, D., Li, L., & Dai, N. (2006). Journal of Molecular Catalysis. B, Enzymatic, 43, 29–32. doi:10.1016/j.molcatb.2006.03.005.

    Article  CAS  Google Scholar 

  4. Chongkhong, S., Tongurai, C., Chetpattananondh, P., & Bunyakan, C. (2007). Biomass and Bioenergy, 31, 563–568. doi:10.1016/j.biombioe.2007.03.001.

    Article  CAS  Google Scholar 

  5. Appleby, D. B. (2005). The biodiesel handbook. New York: American Oil Chemists Society.

    Google Scholar 

  6. Kraai, G. N., Winkelman, J. G. M., de Vries, J. G., & Heeres, H. J. (2008). Biochemical Engineering Journal, 41, 87–94. doi:10.1016/j.bej.2008.03.011.

    Article  CAS  Google Scholar 

  7. Hasan, F., Shah, A. A., & Hameed, A. (2006). Enzyme and Microbial Technology, 39, 235–251. doi:10.1016/j.enzmictec.2005.10.016.

    Article  CAS  Google Scholar 

  8. Trubiano, G., Borio, D., & Errazu, A. (2007). Enzyme and Microbial Technology, 40, 716–722. doi:10.1016/j.enzmictec.2006.06.003.

    Article  CAS  Google Scholar 

  9. Rocha, J. M. S., Gil, M. H., & Garcia, F. A. P. (1999). Journal of Chemical Technology and Biotechnology, 76, 607–612. doi:10.1002/(SICI)1097-4660(199907)74:7<607::AID-JCTB74>3.0.CO;2-N.

    Article  Google Scholar 

  10. Vieira, A. P. A. (2005). Master’s Thesis. Escola de Química/UFRJ, Rio de Janeiro, Brazil.

  11. Prakash, A. M., & Unnikrishnan, S. (1994). Journal of the Chemical Society, Faraday Transactions, 90, 2291–2296. doi:10.1039/ft9949002291.

    Article  CAS  Google Scholar 

  12. Gomes, A. C. L., Nunes, M. H. O., Silva, V. T., & Monteiro, J. L. F. (2004). Studies in Surface Science and Catalysis, 154, 2432–2440. doi:10.1016/S0167-2991(04)80508-1.

    Article  Google Scholar 

  13. Chuah, G. K., Jaenicke, S., & Chan, K. S. (1996). Applied Catalysis A General, 145, 267–284. doi:10.1016/0926-860X(96)00152-4.

    Article  CAS  Google Scholar 

  14. Official Methods and Recommended Practices of The American Oil Chemists’ Society.5th, AOCS: Champaign (1998).

  15. Villeneuve, P., Muderhwa, J. M., Graille, J., & Hass, M. J. (2000). Journal of Molecular Catalysis. B: Enzymatic, 9, 113–148. doi:10.1016/S1381-1177(99)00107-1.

    Article  CAS  Google Scholar 

  16. Ghamgui, H., Karra-Chaâbouni, M., & Gargouri, Y. (2004). Enzyme and Microbial Technology, 35, 355–363. doi:10.1016/j.enzmictec.2004.06.002.

    Article  CAS  Google Scholar 

  17. Wang, J.-X., Huang, Q.-D., Huang, F.-H., Wang, J.-W., & Huang, Q.-J. (2007). Chinese Journal of Biotechnology, 23, 1121–1128. doi:10.1016/S1872-2075(07)60067-3.

    Article  CAS  Google Scholar 

  18. Shimada, Y., Watanabe, Y., Sugihara, A., & Tominaga, Y. (2002). Journal of Molecular Catalysis. B: Enzymatic, 17, 133–142. doi:10.1016/S1381-1177(02)00020-6.

    Article  CAS  Google Scholar 

  19. Vieira, A. P. A., Silva, M. A. P., & Langone, M. A. P. (2006). Latin American Applied Research, 36, 283–288.

    CAS  Google Scholar 

  20. Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data, Pennsylvania (1998).

  21. Dahl, I. M., Wendelbo, R., Andersen, A., Akporiaye, D., Mostad, H., & Fuglerud, T. (1999). Microporous and Mesoporous Materials, 29, 159–171. doi:10.1016/S1387-1811(98)00328-X.

    Article  CAS  Google Scholar 

  22. Aguayo, A. T., Gayubo, A. G., Vivanco, R., Olazar, M., & Bilbao, J. (2005). Applied Catalysis A General, 283, 197–207. doi:10.1016/j.apcata.2005.01.006.

    Article  CAS  Google Scholar 

  23. Tonetto, G., Atias, J., & Lasa, H. (2004). Applied Catalysis A General, 270, 9–25. doi:10.1016/j.apcata.2004.03.042.

    Article  CAS  Google Scholar 

  24. Katada, N., & Niwa, M. (2004). Catalysis Surveys from Asia, 8, 161–170. doi:10.1023/B:CATS.0000038534.37849.16.

    Article  CAS  Google Scholar 

  25. Triantafillidis, C. S., Vlessidis, A. G., Nalbandian, L., & Evmiridis, N. P. (2001). Microporous and Mesoporous Materials, 47, 369–388. doi:10.1016/S1387-1811(01)00399-7.

    Article  CAS  Google Scholar 

  26. Lee, Y.-J., Baek, S.-C., & Jun, K.-W. (2007). Applied Catalysis A General, 329, 130–136. doi:10.1016/j.apcata.2007.06.034.

    Article  CAS  Google Scholar 

  27. Yoo, K. S., Kim, J.-H., Park, M.-J., Kim, S.-J., Joo, O.-S., & Jung, K. D. (2007). Applied Catalysis A General, 330, 57–62. doi:10.1016/j.apcata.2007.07.007.

    Article  CAS  Google Scholar 

  28. Bhatt, N., & Patel, A. (2005). Journal of Molecular Catalysis A Chemical, 238, 223–228. doi:10.1016/j.molcata.2005.05.019.

    Article  CAS  Google Scholar 

  29. Corma, A. (2003). Journal of Catalysis, 216, 298–312. doi:10.1016/S0021-9517(02)00132-X.

    Article  CAS  Google Scholar 

  30. Ramu, S., Lingaiah, N., Devi, B. L. A. P., Prasad, R. B. N., Suryanarayana, I. P. S., & Prasad, P. S. S. (2004). Applied Catalysis A General, 276, 163–168. doi:10.1016/j.apcata.2004.08.002.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge CENPES–Petrobras for financial support and Novozymes Latin America Ltda for kindly providing the enzyme for this research. Dr. Marta A.P. Langone would also like to thank the Programa Prociencia/UERJ. Marcella S. Souza is thankful to CENPES–Petrobras for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta A. P. Langone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, M.S., Aguieiras, E.C.G., da Silva, M.A.P. et al. Biodiesel Synthesis via Esterification of Feedstock with High Content of Free Fatty Acids. Appl Biochem Biotechnol 154, 74–88 (2009). https://doi.org/10.1007/s12010-008-8444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8444-4

Keywords

Navigation