Skip to main content
Log in

Development and economic evaluation of an eco-friendly biocatalytic synthesis of emollient esters

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

During the past decades the understanding and prospects of enzyme-catalysed reactions have been massively widened and there are a number of implemented large-scale enzymatic processes mainly based in the use of commercial biocatalysts. As it might happen that the same process can be successfully carried out by different commercial lipases, the election of the biocatalyst must rely on productivity and economic considerations. This work presents productiveness and direct operation cost evaluation as a key tool for the selection between two commercial lipase catalysts, the versatile but expensive Novozym® 435 and a much more economical option, Lipozyme® TL IM, in the synthesis of spermaceti, a mixture of emollient esters with cosmetic applications. Proving that Novozym® 435 leads to minimum savings of 10% with respect to the cheapest immobilized derivative, biocatalyst cost does not appear to be the major contribution to the economics of the processes under study, due to their great capacity to be recovered and reused. At laboratory scale, the biggest economic investment is caused by substrates, which can be massively reduced at industrial scale by using bulk reagents. In such case, energy cost may be the major contribution to the process economy. This work proposes an optimized process ready to be scaled-up in order to accurately determine the energetic requirements of the possible industrial enzymatic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Antonopoulou I, Varriale S, Topakas E et al (2016) Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application. Appl Microbiol Biotechnol 100:6519–6543. https://doi.org/10.1007/s00253-016-7647-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ye R, Hayes DG, Burton R et al (2016) Solvent-free lipase-catalyzed synthesis of technical-grade sugar esters and evaluation of their physicochemical and bioactive properties. Catalysts 6:78. https://doi.org/10.3390/catal6060078

    Article  CAS  Google Scholar 

  3. Yvergnaux F (2017) Lipases: particularly effective biocatalysts for cosmetic active ingredients. Ocl-Oilseeds Fats Crops Lipids 24:D408. https://doi.org/10.1051/ocl/2017013

    Article  Google Scholar 

  4. Grunwald P (2014) Industrial biocatalysis. CRC Press, Boca Raton (FL)

    Book  Google Scholar 

  5. Hilterhaus L, Liese A, Kettling U, Antranikian G (2016) Applied biocatalysis: from fundamental science to industrial applications. Wiley

  6. Daiha KG, Angeli R, Oliveira SD, Almeida RV (2015) Are lipases still important biocatalysts? A Study of scientific publications and patents for technological forecasting. PLoS ONE ONE 10:e0131624. https://doi.org/10.1371/journal.pone.0131624

    Article  CAS  Google Scholar 

  7. Borole AP, Davison BH (2007) Techno-economic analysis of biocatalytic processes for production of alkene epoxides. Appl Biochem Biotechnol 137–140:437–449. https://doi.org/10.1007/s12010-007-9070-2

    Article  PubMed  Google Scholar 

  8. Mustafa A, Karmali A, Abdelmoez W (2016) Optimisation and economic assessment of lipase-catalysed production of monoesters using Rhizomucor miehei lipase in a solvent-free system. J Clean Prod 137:953–964. https://doi.org/10.1016/j.jclepro.2016.07.056

    Article  CAS  Google Scholar 

  9. Fernández-Lafuente R (2010) Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J Mol Catal B-Enzym 62:197–212. https://doi.org/10.1016/j.molcatb.2009.11.010

    Article  CAS  Google Scholar 

  10. Novozymes A/S Biocatalysis for a sustainable pharma future—Novozymes. https://www.novozymes.com/en/advance-your-business/pharma. Accessed 9 Jan 2019

  11. Bansode SR, Hardikar MA, Rathod VK (2017) Evaluation of reaction parameters and kinetic modelling for Novozym 435 catalysed synthesis of isoamyl butyrate. J Chem Technol Biotechnol 92:1306–1314. https://doi.org/10.1002/jctb.5125

    Article  CAS  Google Scholar 

  12. Koutinas M, Yiangou C, Osório NM et al (2018) Application of commercial and non-commercial immobilized lipases for biocatalytic production of ethyl lactate in organic solvents. Bioresour Technol 247:496–503. https://doi.org/10.1016/j.biortech.2017.09.130

    Article  PubMed  CAS  Google Scholar 

  13. Madarasz J, Nemeth D, Bakos J et al (2015) Solvent-free enzymatic process for biolubricant production in continuous microfluidic reactor. J Clean Prod 93:140–144. https://doi.org/10.1016/j.jclepro.2015.01.028

    Article  CAS  Google Scholar 

  14. Cirillo NA, Quirrenbach CG, Corazza ML, Pedersen Voll FA (2018) Enzymatic kinetics of cetyl palmitate synthesis in a solvent-free system. Biochem Eng J 137:116–124. https://doi.org/10.1016/j.bej.2018.05.021

    Article  CAS  Google Scholar 

  15. Lima LCD, Peres DGC, Mendes AA (2018) Kinetic and thermodynamic studies on the enzymatic synthesis of wax ester catalyzed by lipase immobilized on glutaraldehyde-activated rice husk particles. Bioprocess Biosyst Eng 41:991–1002. https://doi.org/10.1007/s00449-018-1929-9

    Article  PubMed  CAS  Google Scholar 

  16. Montiel MC, Serrano M, Máximo MF et al (2015) Synthesis of cetyl ricinoleate catalyzed by immobilized Lipozyme® CalB lipase in a solvent-free system. Catal Today 255:49–53. https://doi.org/10.1016/j.cattod.2014.09.015

    Article  CAS  Google Scholar 

  17. Serrano-Arnaldos M, Maximo-Martin MF, Montiel-Morte MC et al (2016) Solvent-free enzymatic production of high quality cetyl esters. Bioprocess Biosyst Eng 39:641–649. https://doi.org/10.1007/s00449-016-1545-5

    Article  PubMed  CAS  Google Scholar 

  18. Veit T (2004) Biocatalysis for the production of cosmetic ingredients. Eng Life Sci 4:508–511. https://doi.org/10.1002/elsc.200402148

    Article  CAS  Google Scholar 

  19. Wellendorf M (1963) Composition of spermaceti. Nature 198:1086–1087. https://doi.org/10.1038/1981086b0

    Article  CAS  Google Scholar 

  20. Serrano-Arnaldos M, Bastida J, Máximo F et al (2018) One-Step Solvent-free production of a spermaceti analogue using commercial immobilized lipases. ChemistrySelect 3:748–752. https://doi.org/10.1002/slct.201702332

    Article  CAS  Google Scholar 

  21. Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM (2011) Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev 15:266–274. https://doi.org/10.1021/op1002165

    Article  CAS  Google Scholar 

  22. Ortega-Requena S, Bódalo-Santoyo A, Bastida-Rodríguez J et al (2014) Optimized enzymatic synthesis of the food additive polyglycerol polyricinoleate (PGPR) using Novozym® 435 in a solvent free system. Biochem Eng J 84:91–97. https://doi.org/10.1016/j.bej.2014.01.003

    Article  CAS  Google Scholar 

  23. ASTM D974-02e1 (2002) Standard test method for acid and base number by color-indicator titration. ASTM Int, West Conshohocken, PA

    Google Scholar 

  24. Martins AB, da Silva AM, Schein MF et al (2014) Comparison of the performance of commercial immobilized lipases in the synthesis of different flavor esters. J Mol Catal B-Enzym 105:18–25. https://doi.org/10.1016/j.molcatb.2014.03.021

    Article  CAS  Google Scholar 

  25. Aguieiras ECG, Veloso CO, Bevilaqua JV et al (2011) Estolides synthesis catalyzed by immobilized lipases. Enzyme Res 2011:1–7. https://doi.org/10.4061/2011/432746

    Article  CAS  Google Scholar 

  26. Anderson EM, Larsson KM, Kirk O (1998) One biocatalyst-many applications: the use of Candida Antarctica B-lipase in organic synthesis. Biocatal Biotransformation 16:181–204. https://doi.org/10.3109/10242429809003198

    Article  CAS  Google Scholar 

  27. Basri M, Kassim MA, Mohamad R, Ariff AB (2013) Optimization and kinetic study on the synthesis of palm oil ester using Lipozyme TL IM. J Mol Catal B Enzym 85–86:214–219. https://doi.org/10.1016/j.molcatb.2012.09.013

    Article  CAS  Google Scholar 

  28. Choi N, Kim Y, Lee J-S et al (2016) Synthesis of fatty acid ethyl ester from acid oil in a continuous reactor via an enzymatic transesterification. J Am Oil Chem Soc 93:311–318. https://doi.org/10.1007/s11746-016-2786-9

    Article  CAS  Google Scholar 

  29. Dianóczki C, Recseg K, Kővári K, Poppe L (2007) Convenient enzymatic preparation of conjugated linoleic acid alkyl esters with C6–C22 alcohols. J Mol Catal B Enzym 45:45–49. https://doi.org/10.1016/j.molcatb.2006.11.005

    Article  CAS  Google Scholar 

  30. Comisión Nacional de los Mercados y la Competencia (2016) Boletín de indicadores eléctricos 2016

  31. Brennan DJ (2004) Developing a process industry culture. Morgan Printing

  32. Eurostat - Tables, Graphs and Maps Interface (TGM). https://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode=ten00117&language=en. Accessed 13 Dec 2018

  33. Jiménez-González C, Constable DJC (2011) Green chemistry and engineering: a practical design approach. Wiley

  34. Vogel GH (2014) Production cost estimation. Ullmanns Encycl. Ind, Chem

    Google Scholar 

  35. Bermúdez JM, Beneroso D, Rey-Raap N et al (2015) Energy consumption estimation in the scaling-up of microwave heating processes. Chem Eng Process Process Intensif 95:1–8. https://doi.org/10.1016/j.cep.2015.05.001

    Article  CAS  Google Scholar 

  36. Cetyl alcohol, Sigma-Aldrich. https://www.sigmaaldrich.com/catalog/search?term=Cetyl+alcohol&interface=Product%20Name&N=0&mode=mode%20matchpartialmax&lang=es&region=ES&focus=productN=0%20220003048%20219853286%20219853112. Accessed 3 Sep 2018

  37. Lauric acid, 99%, ACROS Organics - Organic Building Blocks Chemicals. https://www.fishersci.es/shop/products/lauric-acid-99-acros-organics-5/p-3736787. Accessed 3 Sep 2018

  38. Myristic acid, Sigma-Aldrich. https://www.sigmaaldrich.com/catalog/search?term=Myristic+acid&interface=Product%20Name&N=0&mode=mode%20matchpartialmax&lang=es&region=ES&focus=productN=0%20220003048%20219853286%20219853112. Accessed 3 Sep 2018

  39. Palmitic acid, Sigma-Aldrich. https://www.sigmaaldrich.com/catalog/search?term=Palmitic+acid&interface=Product%20Name&N=0&mode=mode%20matchpartialmax&lang=es&region=ES&focus=productN=0%20220003048%20219853286%20219853112. Accessed 3 Sep 2018

  40. Stearic acid, Sigma-Aldrich. https://www.sigmaaldrich.com/catalog/search?term=Stearic+acid&interface=Product%20Name&N=0&mode=mode%20matchpartialmax&lang=es&region=ES&focus=productN=0%20220003048%20219853286%20219853112. Accessed 3 Sep 2018

  41. Cetyl Alcohol Fatty Alcohol C1698 Supplier From India. https://www.alibaba.com/product-detail/Cetyl-Alcohol-Fatty-Alcohol-C1698-Supplier_146547456.html. Accessed 6 Sep 2018

  42. High quality cosmetic material Lauric acid 99%, Product Details from Guangzhou Kaoking Chemical Co., Ltd. https://kao.en.alibaba.com/product/60399285976-802337594/high_quality_cosmetic_material_Lauric_acid_99_price.html?spm=a2700.8304367.prewdfa4cf.2.207346f37aIcYF. Accessed 6 Sep 2018

  43. Myristic acid. https://wholesaler.alibaba.com/product-detail/Soap-Detergent-Cosmetic-Surfactant-myristic-acid_60703624293.html. Accessed 7 Sep 2018

  44. Chemical Raw Material Palmitic Acid For Cosmetics. https://www.alibaba.com/product-detail/chemical-raw-material-palmitic-acid-for_60148565501.html?spm=a2700.7724838.2017115.109.4a105a4l77Oi9. Accessed 6 Sep 2018

  45. High quality cosmetic material Stearic acid, Product Details from Guangzhou Kaoking Chemical Co., Ltd. https://kao.en.alibaba.com/product/60439480037-802394266/high_quality_cosemtic_material_Stearic_acid.html?spm=a2700.8304367.prewdfa4cf.2.28c79411Vzc7eM. Accessed 6 Sep 2018

Download references

Acknowledgements

This work has been funded by the Spanish Ministry of Science, Innovation and Universities (CTQ2015-66723-R) and the European Commission (FEDER/ERDF). M. Serrano-Arnaldos and S. Ortega-Requena were beneficiaries of a FPI pre-doctoral scholarship from the Spanish Ministry of Economy and Competitiveness (MINECO) and a Torres Quevedo grant, respectively. We wish to acknowledge D. Ramiro Martínez Gutiérrez (Novozymes Spain S.A.) who kindly supplied the biocatalysts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mar Serrano-Arnaldos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano-Arnaldos, M., Montiel, M.C., Ortega-Requena, S. et al. Development and economic evaluation of an eco-friendly biocatalytic synthesis of emollient esters. Bioprocess Biosyst Eng 43, 495–505 (2020). https://doi.org/10.1007/s00449-019-02243-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02243-1

Keywords

Navigation