Skip to main content
Log in

The effect of growth rate on the production and vitality of non-Saccharomyces wine yeast in aerobic fed-batch culture

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Non-Saccharomyces wine yeasts are of increasing importance due to their influence on the organoleptic properties of wine and thus the factors influencing the biomass production of these yeasts, as starter cultures, are of commercial value. Therefore, the effects of growth rates on the biomass yield (Yx/s) and fermentation performance of non-Saccharomyces yeasts at bench and pilot scale were examined. The fermentative performance and (Yx/s) were optimised, in aerobic fed-batch cultivations, to produce commercial wine seed cultures of Lachancea thermotolerans Y1240, Issatchenkia orientalis Y1161 and Metschnikowia pulcherrima Y1337. Saccharomyces cerevisiae (Lalvin EC1118) was used as a benchmark. A Crabtree positive response was shown by L. thermotolerans in a molasses-based industrial medium, at growth rates exceeding 0.21 h−1 (µcrit), resulting in a Yx/s of 0.76 g/g at 0.21 h−1 (46% of µmax) in the aerobic bioreactor-grown fed-batch culture at bench scale. At pilot scale and 0.133 h−1 (36% of µmax), this yeast exhibited ethanol concentrations reaching 10.61 g/l, as a possible result of substrate gradients. Crabtree negative responses were observed for I. orientalis and M. pulcherrima resulting in Yx/s of 0.83 g/g and 0.68 g/g, respectively, below 32% of µmax. The Yx/s of M. pulcherrima, I. orientalis and L. thermotolerans was maximised at growth rates between 0.10 and 0.12 h−1 and the fermentative capacity of these yeasts was maximised at these lower growth rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cosme F, Vilela A, Filipe-ribeiro L et al (2018) Wine microbial spoilage: advances in defects remediation. In: Holban AM, Grumezescu AM (eds) Microbial contamination and food degradation. Academic Press, London, pp 271–314

    Google Scholar 

  2. Binati RL, Lemos Junior WJF, Luzzini G et al (2020) Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: a study on Lachancea thermotolerans, Metschnikowia spp and Starmerella bacillaris strains isolated in Italy. Int J Food Microbiol 318:108470. https://doi.org/10.1016/j.ijfoodmicro.2019.108470

    Article  CAS  PubMed  Google Scholar 

  3. Božič JT, Butinar L, Albreht A et al (2020) The impact of Saccharomyces and non-Saccharomyces yeasts on wine colour: a laboratory study of vinylphenolic pyranoanthocyanin formation and anthocyanin cell wall adsorption. LWT 123:109072. https://doi.org/10.1016/j.lwt.2020.109072

    Article  CAS  Google Scholar 

  4. Gobbi M, Comitini F, Domizio P et al (2013) Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: a strategy to enhance acidity and improve the overall quality of wine. Food Microbiol 33:271–281. https://doi.org/10.1016/j.fm.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  5. Quirós M, Rojas V, Gonzalez R, Morales P (2014) Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration. Int J Food Microbiol 181:85–91. https://doi.org/10.1016/j.ijfoodmicro.2014.04.024

    Article  CAS  PubMed  Google Scholar 

  6. Esteve-Zarzoso B, Manzanares P, Ramön D, Quero A (1998) The role of non-Saccharomyces yeasts in industrial winemaking. Int Microbiol 1:143–148. https://doi.org/10.2436/im.v1i2.59

    Article  CAS  PubMed  Google Scholar 

  7. Malfeito-Ferreira M (2018) Spoilage yeasts in red wines. In: Morata A (ed) Red wine technology. Academic Press, London, pp 219–235

    Google Scholar 

  8. Ciani M, Comitini F (2011) Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Ann Microbiol 61:25–32. https://doi.org/10.1007/s13213-010-0069-5

    Article  Google Scholar 

  9. Mehlomakulu NN, Setati ME, Divol B (2014) Characterization of novel killer toxins secreted by wine-related non-Saccharomyces yeasts and their action on Brettanomyces spp. Int J Food Microbiol 188:83–91. https://doi.org/10.1016/j.ijfoodmicro.2014.07.015

    Article  CAS  PubMed  Google Scholar 

  10. Parapouli M, Vasileiadis A, Afendra AS, Hatziloukas E (2020) Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol 6:1–31. https://doi.org/10.3934/microbiol.2020001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143:1384–1394. https://doi.org/10.1128/jb.143.3.1384-1394.1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pronk JT, Steensma HY, van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633

    Article  CAS  PubMed  Google Scholar 

  13. Crabtree HG (1928) The carbohydrate metabolism of certain pathological overgrowths. Biochem J 22:1289–1298. https://doi.org/10.1042/bj0221289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156. https://doi.org/10.1099/00221287-44-2-149

    Article  PubMed  Google Scholar 

  15. van Dijken JP, Weusthuis RA, Pronk JT (1993) Kinetics of growth and sugar consumption in yeasts. Antonie Van Leeuwenhoek 63:343–352. https://doi.org/10.1007/BF00871229

    Article  PubMed  Google Scholar 

  16. Blank LM, Lehmbeck F, Sauer U (2005) Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 5:545–558. https://doi.org/10.1016/j.femsyr.2004.09.008

    Article  CAS  PubMed  Google Scholar 

  17. Hagman A, Säll T, Piškur J (2014) Analysis of the yeast short-term Crabtree effect and its origin. FEBS J 281:4805–4814. https://doi.org/10.1111/febs.13019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reynders MB, Rawlings DE, Harrison STL (1997) Demonstration of the Crabtree effect in Phaffia rhodozyma during continuous and fed-batch cultivation. Biotechnol Lett 19:549–552. https://doi.org/10.1023/A:1018341421122

    Article  CAS  Google Scholar 

  19. Wardrop FR, Liti G, Cardinali G, Walker GM (2004) Physiological responses of Crabtree positive and Crabtree negative yeasts to glucose upshifts in a chemostat. Ann Microbiol 54:103–114

    CAS  Google Scholar 

  20. Dashko S, Zhou N, Compagno C, Piškur J (2014) Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res 14:826–832. https://doi.org/10.1111/1567-1364.12161

    Article  CAS  PubMed  Google Scholar 

  21. Schuler MM, Marison IW (2012) Real-time monitoring and control of microbial bioprocesses with focus on the specific growth rate: current state and perspectives. Appl Microbiol Biotechnol 94:1469–1482. https://doi.org/10.1007/s00253-012-4095-z

    Article  CAS  PubMed  Google Scholar 

  22. Hagman A, Säll T, Compagno C, Piskur J (2013) Yeast “make-accumulate-consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS ONE 8:e68734. https://doi.org/10.1371/journal.pone.0068734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Verduyn C, Stouthamer AH, Scheffers WA, van Dijken JP (1991) A theoretical evaluation of growth yields of yeasts. Antonie Van Leeuwenhoek 59:49–63. https://doi.org/10.1007/BF00582119

    Article  CAS  PubMed  Google Scholar 

  24. Gomez-Pastor R, Perez-Torrado R, Garre E, Matallana E (2011) Recent advances in yeast biomass production. In: Matovic D (ed) Biomass—detection, production and usage. IntechOpen, London

    Google Scholar 

  25. Anane E, van Rensburg E, Görgens JF (2013) Optimisation and scale-up of α-glucuronidase production by recombinant Saccharomyces cerevisiae in aerobic fed-batch culture with constant growth rate. Biochem Eng J 81:1–7. https://doi.org/10.1016/j.bej.2013.09.012

    Article  CAS  Google Scholar 

  26. Van Hoek P, Van Dijken JP, Pronk JT (1998) Effect of specific growth rate on fermentative capacity of baker’s yeast. Appl Environ Microbiol 64:4226–4233. https://doi.org/10.1128/AEM.64.11.4226-4233.1998

    Article  PubMed  PubMed Central  Google Scholar 

  27. Van Hoek P, De Hulster E, Van Dijken JP, Pronk JT (2000) Fermentative capacity in high-cell-density fed-batch cultures of baker’s yeast. Biotechnol Bioeng 68:517–523. https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5%3c517::AID-BIT5%3e3.0.CO;2-O

    Article  PubMed  Google Scholar 

  28. Shin HT, Lim YB, Koh JH et al (2002) Growth of Issatchenkia orientalis in aerobic batch and fed-batch cultures. J Microbiol 40:82–85

    Google Scholar 

  29. Schnierda T, Bauer FF, Divol B et al (2014) Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts. Lett Appl Microbiol 58:478–485. https://doi.org/10.1111/lam.12217

    Article  CAS  PubMed  Google Scholar 

  30. Belo I, Pinheiro R, Mota M (2003) Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor. Biotechnol Prog 19:665–671. https://doi.org/10.1021/bp0257067

    Article  CAS  PubMed  Google Scholar 

  31. Doran PM (1995) Bioprocess engineering principles. Elsevier

    Google Scholar 

  32. Diaz A, Acevedo F (1999) Scale-up strategy for bioreactors with Newtonian and non-Newtonian broths. Bioprocess Eng 21:21–23. https://doi.org/10.1007/s004490050634

    Article  CAS  Google Scholar 

  33. Opekarová M, Sigler K (1982) Acidification power: indicator of metabolic activity and autolytic changes in Saccharomyces cerevisiae. Folia Microbiol (Praha) 27:395–403. https://doi.org/10.1007/BF02876450

    Article  Google Scholar 

  34. Dinsdale MG, Lloyd D, Jarvis B (1995) Yeast vitality during cider fermentation: two approaches to the measurement of membrane potential. J Inst Brew 101:453–458

    Article  Google Scholar 

  35. Gump BH, Zoecklein BW, Fugelsang KC (2001) Prediction of prefermentation nutritional status of grape juice. In: Spencer JFT, de Spencer ALR (eds) Food microbiology protocols. Humana Press, Totowa, pp 283–296

    Google Scholar 

  36. Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  37. Leite FCB, Basso TO, de Barros PW et al (2012) Quantitative aerobic physiology of the yeast Dekkera bruxellensis, a major contaminant in bioethanol production plants. FEMS Yeast Res 13:34–43. https://doi.org/10.1111/j.1567-1364.2012.12007.x

    Article  PubMed  Google Scholar 

  38. Taccari M, Canonico L, Comitini F et al (2012) Screening of yeasts for growth on crude glycerol and optimization of biomass production. Bioresour Technol 110:488–495. https://doi.org/10.1016/j.biortech.2012.01.109

    Article  CAS  PubMed  Google Scholar 

  39. Crueger W, Crueger A (2000) Substrates for industrial fermentation. In: Brock TD (ed) Biotechnology, a text book of industrial microbiology. Panima Publishing Corporation, New Delhi, pp 59–62

    Google Scholar 

  40. van Urk H, Postma E, Scheffers WA, van Dijken JP (1989) Glucose transport in crabtree-positive and crabtree-negative yeasts. J Gen Microbiol 135:2399–2406. https://doi.org/10.1099/00221287-135-9-2399

    Article  PubMed  Google Scholar 

  41. Bauer EF, Pretorius LS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine—a review. South African J Enol Vitic 21:27–51

    CAS  Google Scholar 

  42. Abeln F, Chuck CJ (2019) Achieving a high-density oleaginous yeast culture: comparison of four processing strategies using Metschnikowia pulcherrima. Biotechnol Bioeng 116:3200–3214. https://doi.org/10.1002/bit.27141

    Article  CAS  PubMed  Google Scholar 

  43. Ienczak JL, Schmidell W, De Aragão GMF (2013) High-cell-density culture strategies for polyhydroxyalkanoate production: a review. J Ind Microbiol Biotechnol 40:275–286. https://doi.org/10.1007/s10295-013-1236-z

    Article  CAS  PubMed  Google Scholar 

  44. Larsson G, Törnkvist M, Ståhl Wernersson E et al (1996) Substrate gradients in bioreactors: origin and consequences. Bioprocess Eng 14:281–289. https://doi.org/10.1007/BF00369471

    Article  CAS  Google Scholar 

  45. Lidén G (2002) Understanding the bioreactor. Bioprocess Biosyst Eng 24:273–279. https://doi.org/10.1007/s004490100263

    Article  CAS  Google Scholar 

  46. Lejeune A, Delvigne F, Thonart P (2010) Influence of bioreactor hydraulic characteristics on a Saccharomyces cerevisiae fed-batch culture: hydrodynamic modelling and scale-down investigations. J Ind Microbiol Biotechnol 37:225–236. https://doi.org/10.1007/s10295-009-0564-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the South African National Research Foundation (NRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhardt Coetzee.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 107 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkhuizen, JH., Coetzee, G., van Rensburg, E. et al. The effect of growth rate on the production and vitality of non-Saccharomyces wine yeast in aerobic fed-batch culture. Bioprocess Biosyst Eng 44, 2655–2665 (2021). https://doi.org/10.1007/s00449-021-02634-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02634-3

Keywords

Navigation