Enhanced exopolysaccharide production in submerged fermentation of Ganoderma lucidum by Tween 80 supplementation

Abstract

Bioactive polysaccharides extracted from Ganoderma lucidum (G. lucidum) have been widely applied in food and medicine for their multiple functions. In this study, G. lucidum exopolysaccharide (EPS) production in submerged fermentation was stimulated by Tween 80. The addition of 0.25% Tween 80 on day 3 gave a maximum production of mycelial biomass and EPS, with an increase of 19.76 and 137.50%, respectively. Analysis of fermentation kinetics showed that glucose was consumed faster after adding Tween 80, while the expression of EPS biosynthesis-related genes and ATP generation were greatly improved. Moreover, Tween 80 resulted in the significant accumulation of reactive oxygen species and increased cell membrane and cell wall permeability. The EPS from Tween 80-containing medium had higher contents of carbohydrate and uronic acid, lower molecular weight, and higher antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals than those of EPS produced in the absence of Tween 80. This study provides further evidence to clarify the stimulatory effects of Tween 80 in fermentation and provides a guide for the production of bioactive G. lucidum EPS.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Lin Z (2019) Ganoderma (Lingzhi) in traditional Chinese medicine and Chinese culture. Adv Exp Med Biol 1181:1–13

    CAS  PubMed  Google Scholar 

  2. 2.

    Cor D, Knez Z, Knez Hrncic M (2018) Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: a review. Molecules 23(3):649

    PubMed Central  Google Scholar 

  3. 3.

    Wasser SP (2011) Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl Microbiol Biotechnol 89(5):1323–1332

    CAS  PubMed  Google Scholar 

  4. 4.

    Yang H, Min W, Bi P, Zhou H, Huang F (2013) Stimulatory effects of Coix lacryma-jobi oil on the mycelial growth and metabolites biosynthesis by the submerged culture of Ganoderma lucidum. Biochem Eng J 76:77–82

    CAS  Google Scholar 

  5. 5.

    Hu G, Zhai M, Niu R, Xu X, Liu Q, Jia J (2018) Optimization of culture condition for ganoderic acid production in Ganoderma lucidum liquid static culture and design of a suitable bioreactor. Molecules 23(10):2563

    PubMed Central  Google Scholar 

  6. 6.

    Tao TL, Cui FJ, Chen XX, Sun WJ, Huang DM, Zhang J, Yang Y, Wu D, Liu WM (2018) Improved mycelia and polysaccharide production of Grifola frondosa by controlling morphology with microparticle Talc. Microb Cell Fact 17(1):1

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Yang FC, Liau CB (1998) Effects of cultivating conditions on the mycelial growth of Ganoderma lucidum in submerged flask cultures. Bioprocess Eng 19(3):233–236

    Google Scholar 

  8. 8.

    Zhang BB, Cheung PC (2011) Use of stimulatory agents to enhance the production of bioactive exopolysaccharide from Pleurotus tuber-regium by submerged fermentation. J Agric Food Chem 59(4):1210–1216

    CAS  PubMed  Google Scholar 

  9. 9.

    Yang X, Dong Y, Liu G, Zhang C, Cao Y, Wang C (2019) Effects of nonionic surfactants on pigment excretion and cell morphology in extractive fermentation of Monascus sp. NJ1. J Sci Food Agric 99(3):1233–1239

    CAS  PubMed  Google Scholar 

  10. 10.

    Li PJ, Xia JL, Shan Y, Nie ZY, Wang FR (2015) Effects of surfactants and microwave-assisted pretreatment of orange peel on extracellular enzymes production by Aspergillus japonicus PJ01. Appl Biochem Biotechnol 176(3):758–771

    CAS  PubMed  Google Scholar 

  11. 11.

    Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25(1):99–121

    CAS  PubMed  Google Scholar 

  12. 12.

    Liang Y, Zhu L, Gao M, Zheng Z, Wu J, Zhan X (2018) Influence of Tween-80 on the production and structure of water-insoluble curdlan from Agrobacterium sp. Int J Biol Macromol 106:611–619

    CAS  PubMed  Google Scholar 

  13. 13.

    Ghashghaei T, Soudi MR, Hoseinkhani S, Shiri M (2018) Effects of nonionic surfactants on xanthan gum production: a survey on cellular interactions. Iran J Biotechnol 16(1):e1483

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Sheng L, Zhu G, Tong Q (2013) Mechanism study of Tween 80 enhancing the pullulan production by Aureobasidium pullulans. Carbohydr Polym 97(1):121–123

    CAS  PubMed  Google Scholar 

  15. 15.

    Zhang BB, Cheung PC (2011) A mechanistic study of the enhancing effect of Tween 80 on the mycelial growth and exopolysaccharide production by Pleurotus tuber-regium. Bioresour Technol 102(17):8323–8326

    CAS  PubMed  Google Scholar 

  16. 16.

    DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    CAS  Google Scholar 

  17. 17.

    Miller LG (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem 31(3):426–428

    CAS  Google Scholar 

  18. 18.

    Xu X, Wu P, Wang T, Yan L, Lin M, Chen C (2019) Synergistic effects of surfactant-assisted biodegradation of wheat straw and production of polysaccharides by Inonotus obliquus under submerged fermentation. Bioresour Technol 278:43–50

    CAS  PubMed  Google Scholar 

  19. 19.

    Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54(2):484–489

    CAS  PubMed  Google Scholar 

  20. 20.

    Wei-Juan YAN, Jian-Nong W, Li-Jun S (2009) Qualitative and quantitative determination of tween 80 in 42 traditional Chinese medicine injections. J Fourth Mil Med Univ 30(21):2366–2369

    Google Scholar 

  21. 21.

    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    CAS  Google Scholar 

  22. 22.

    Ma Z, Xu M, Wang Q, Wang F, Zheng H, Gu Z, Li Y, Shi G, Ding Z (2019) Development of an efficient strategy to improve extracellular polysaccharide production of Ganoderma lucidum using l-phenylalanine as an enhancer. Front Microbiol 10:2306

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Zhu S, Du C, Yu T, Cong X, Liu Y, Chen S, Li Y (2019) Antioxidant activity of selenium-enriched peptides from the protein hydrolysate of Cardamine violifolia. J Food Sci 84(12):3504–3511

    CAS  PubMed  Google Scholar 

  24. 24.

    Tu G, Wang Y, Ji Y, Zou X (2015) The effect of Tween 80 on the polymalic acid and pullulan production by Aureobasidium pullulans CCTCC M2012223. World J Microbiol Biotechnol 31(1):219–226

    CAS  PubMed  Google Scholar 

  25. 25.

    Dou Y, Xiao J-H, Xia X-X, Zhong J-J (2013) Effect of oxygen supply on biomass and helvolic acid production in submerged fermentation of Cordyceps taii. Biochem Eng J 81:73–79

    CAS  Google Scholar 

  26. 26.

    Hyun Mi K, Moon Ki P, Jong Won Y (2006) Culture pH affects exopolysaccharide production in submerged mycelial culture of Ganoderma lucidum. Appl Biochem Biotechnol 134(3):249–262

    Google Scholar 

  27. 27.

    Li Q, Lei Y, Hu G, Lei Y, Dan D (2018) Effects of Tween 80 on the liquid fermentation of Lentinus edodes. Food Sci Biotechnol 27(4):1103–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ma Z, Ye C, Deng W, Xu M, Wang Q, Liu G, Wang F, Liu L, Xu Z, Shi G, Ding Z (2018) Reconstruction and analysis of a genome-scale metabolic model of Ganoderma lucidum for improved extracellular polysaccharide production. Front Microbiol 9:3076

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Neupane P, Bhuju S, Thapa N, Bhattarai HK (2019) ATP synthase: structure, function and inhibition. Biomol Concepts 10(1):1–10

    CAS  PubMed  Google Scholar 

  30. 30.

    Zhang N, Fan Y, Li C, Wang Q, Leksawasdi N, Li F, Wang S (2018) Cell permeability and nuclear DNA staining by propidium iodide in basidiomycetous yeasts. Appl Microbiol Biotechnol 102(9):4183–4191

    CAS  PubMed  Google Scholar 

  31. 31.

    Chen S, Xu J, Liu C, Zhu Y, Nelson DR, Zhou S, Li C, Wang L, Guo X, Sun Y, Luo H, Li Y, Song J, Henrissat B, Levasseur A, Qian J, Li J, Luo X, Shi L, He L, Xiang L, Xu X, Niu Y, Li Q, Han MV, Yan H, Zhang J, Chen H, Lv A, Wang Z, Liu M, Schwartz DC, Sun C (2012) Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun 3:913

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28(8):799–808

    PubMed  Google Scholar 

  33. 33.

    Liang D (2018) A salutary role of reactive oxygen species in intercellular tunnel-mediated communication. Front Cell Dev Biol 6:2

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Wang L, Sha Y, Wu D, Wei Q, Chen D, Yang S, Jia F, Yuan Q, Han X, Wang J (2020) Surfactant induces ROS-mediated cell membrane permeabilization for the enhancement of mannatide production. Process Biochem 91:172–180

    CAS  Google Scholar 

  35. 35.

    Zhao Y, Hu W, Zhang H, Ding C, Huang Y, Liao J, Zhang Z, Yuan S, Chen Y, Yuan M (2019) Antioxidant and immunomodulatory activities of polysaccharides from the rhizome of Dryopteris crassirhizoma Nakai. Int J Biol Macromol 130:238–244

    CAS  PubMed  Google Scholar 

  36. 36.

    Liao B, Huang H (2019) Structural characterization of a novel polysaccharide from Hericium erinaceus and its protective effects against H2O2-induced injury in human gastric epithelium cells. J Funct Foods 56:265–275

    CAS  Google Scholar 

  37. 37.

    Liu S, Li B, Chen X, Qin Y, Li P (2019) Effect of polysaccharide from Enteromorpha prolifera on maize seedlings under NaCl stress. J Oceanol Limnol 37(4):1372–1381

    CAS  Google Scholar 

  38. 38.

    Liang X, Gao Y, Fei W, Zou Y, He M, Yin L, Yuan Z, Yin Z, Zhang W (2018) Chemical characterization and antioxidant activities of polysaccharides isolated from the stems of Parthenocissus tricuspidata. Int J Biol Macromol 119:70–78

    CAS  PubMed  Google Scholar 

  39. 39.

    Wang C, Yu Y-B, Chen T-T, Wang Z-W, Yan J-K (2020) Innovative preparation, physicochemical characteristics and functional properties of bioactive polysaccharides from fresh okra (Abelmoschus esculentus (L.) Moench). Food Chem 320:126647

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key-Area Research and Development Program of Guangdong Province (No. 2018B020205001), the Guangdong Province Innovation Team Construction Program on Modern Agriculture Industrial Technology System (The Edible Fungus) (No. 2019KJ103), the Guangdong Province Science and Technology Project (No. 2019A050520003), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA01020304).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 74 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yang, Y., Zhang, Y. et al. Enhanced exopolysaccharide production in submerged fermentation of Ganoderma lucidum by Tween 80 supplementation. Bioprocess Biosyst Eng (2020). https://doi.org/10.1007/s00449-020-02418-1

Download citation

Keywords

  • Ganoderma lucidum
  • Exopolysaccharide
  • Submerged fermentation
  • Tween 80