Skip to main content
Log in

Simulation and experimental validation of a gradient feeding system for fast assessment of the kinetic behavior of a microbial consortium in a tubular biofilm reactor

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study deals with the mathematical simulation and experimental validation of a gradient system for the gradual change of the imidacloprid loading rate to a tubular biofilm reactor (TBR). The strategy was used for fast studies of the kinetic and stoichiometric impact caused by the increase in the pesticide loading rate in a TBR, running in plug flow regime. Seemingly, this strategy has never been used for biokinetic and stoichiometric studies in biofilm reactors. For this purpose, a mathematical model describing the substrate transient behavior Sg(t) in a concentration gradient generator system using variable volume tanks is proposed. A second model, representing the temporary variation in the loading rate of imidacloprid to an aerated equalizer tank preceding the packed zone of the TBR, is also presented. Both models were experimentally confirmed. After the treatment of the experimental data, the kinetic and stoichiometric changes occurring in the TBR, caused by the gradual increase in the imidacloprid loading rate, were readily evaluated. Although the structure of the microbial community, at the phylum level, showed similar behavior along the tubular reactor, the stress produced by the gradual increase in imidacloprid concentration had functional consequences on the mixed microbial populations which were reflected on the stoichiometric and kinetic parameters. After increasing more than five times the imidacloprid loading rate to the TBR, the imidacloprid removal efficiency decayed about 40%, and the microbial-specific removal rate of the insecticide showed a decrease of about 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A g :

Sectional area of gradient tank G (cm2)

A r :

Sectional area of tank R (cm2)

B V = FS eq/V L :

Volumetric loading rate of imidacloprid (mg L−1 h−1)

COD:

Chemical oxygen demand (mg L−1)

conv:

Convective

D g :

Diameter of gradient tank G (cm)

D R :

Diameter of reservoir tank R (cm)

Eq:

Aerated compartment operating as equalizer

ExpIntegralE[n,m]:

Exponential integral \(\int_{1}^{\infty } {\frac{{e^{ - mt} }}{{t^{n} }}}\) in Eq. (9)

F :

Liquid flow rate (L h−1)

MS medium:

Mineral salts medium

q s :

Specific degradation rate of imidacloprid (mg CFU−1 h−1)

\(q_{{{\text{s}}_{\text{i}} }}\) :

Overall initial specific removal rate of imidacloprid (mg CFU−1 h−1)

\(q_{{{\text{s}}_{\text{f}} }}\) :

Overall final specific removal rate of imidacloprid (mg CFU−1 h−1)

R V= F(S eq  − s)/V L :

Volumetric loading rate of imidacloprid (mg L−1 h−1)

S eq :

Imidacloprid concentration in equalizer (mg L−1)

S g :

Imidacloprid concentration in G tank (mg L−1)

S r :

Imidacloprid concentration in reservoir tank (mg L−1)

s :

Imidacloprid concentration in the TBR packed zone (mg L−1)

t :

Time (h)

TBR:

Tubular biofilm reactor

V eq :

Liquid volume of equalizer (L)

V g :

Liquid volume of gradient tank G (L)

V L :

Interstitial liquid volume in the TBR packed zone (L)

V r :

Liquid volume of reservoir tank (L)

V p :

Volume of the support material in the TBR packed zone (L)

W p :

Weight of porous fragments in TBR

x eq :

Suspended cells in equalizer (CFU L−1)

X i :

Initial total viable cells in the reactor (CFU/reactor)

X f :

Final total viable cells in the reactor (CFU/reactor)

z :

Length of the packed zone of the tubular biofilm reactor (cm)

ac:

Accumulation

cons:

Consumption

eq:

Equalizer

f:

Final condition

g:

Gradient

L:

Liquid

o:

Initial condition

p:

Porous support

r:

Reservoir

ε E :

Intraparticle porosity (non-dimensional)

ε P :

Interparticle porosity (non-dimensional)

\(\varepsilon_{\text{T}} \, = \,\varepsilon_{\text{P}} \, + \,\varepsilon_{\text{E}}\) :

Total bed porosity (non-dimensional)

η :

Imidacloprid removal efficiency (%)

\(\varphi_{\text{g}} \, = \, 1\, - \,\varphi_{\text{r}}\) :

Relative area of gradient tank (non-dimensional)

φ r :

Relative area of reservoir tank (non-dimensional)

ρ s :

Density of porous rock (g cm−3)

References

  1. Cerejeira MJ, Viana P, Batista F, Pereira T, Silva E, Valério MJ, Silva A, Ferreira M, Silva-Fernandes AM (2003) Pesticides in Portuguese surface and ground waters. Water Res 37:1055–1063. https://doi.org/10.1016/S0043-1354(01)00462-6

    Article  CAS  PubMed  Google Scholar 

  2. La N, Lamers M, Barmwarth M, Nguyen VV, Streck T (2015) Imidacloprid concentrations in paddy rice fields in northern Vietnam: measurement and probabilistic modeling. Paddy Water Environ 13:191–203. https://doi.org/10.1007/s10333-014-0420-8

    Article  Google Scholar 

  3. Santek B, Ivancic M, Horva P, Novak S, Maric V (2006) Horizontal tubular bioreactors in biotechnology. Chem Biochem Eng Q 20:389–399

    CAS  Google Scholar 

  4. Moser A (1991) Tubular bioreactors: case study of bioreactor performance for industrial production and scientific research. Biotechnol Bioeng 37:1054–1065

    Article  CAS  PubMed  Google Scholar 

  5. Skoneczny S, Tabiś B (2015) The method for steady states determination in tubular biofilm reactors. Chem Eng Sci 137:178–187

    Article  CAS  Google Scholar 

  6. Wang G, Tang W, Xia J, Chu J, Noorman H, van Gulik WM (2015) Integration of microbial kinetics and fluid dynamics toward model-driven scale-up of industrial bioprocesses. Eng Life Sci 15:20–29. https://doi.org/10.1002/elsc.201400172

    Article  CAS  Google Scholar 

  7. Visser D, van Zuylen GA, van Dam JC, Eman MR, Pröll A, Ras C, Wu L, van Gulik WM, Joseph J. Heijnen JJ (2004) Analysis of in vivo kinetics of glycolysis in aerobic Saccharomyces cerevisiae by application of glucose and ethanol pulses. Biotechnol Bioeng 88:157–167. https://doi.org/10.1002/bit.20235

    Article  CAS  PubMed  Google Scholar 

  8. Yang RD, Humphrey AE (1975) Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol Bioeng 17(8):1211–1235. https://doi.org/10.1002/bit.260170809

    Article  CAS  PubMed  Google Scholar 

  9. Nava-Arenas I, Ruiz-Ordaz N, Galindez-Mayer J, Ramos-Monroy O, Juárez-Ramírez C, Curiel-Quesada E, Poggi-Varaldo H (2012) Acclimation of a microbial community to degrade a combination of organochlorine herbicides in a biofilm reactor. Environ Eng Manag J 11:1753–1761. http://omicron.ch.tuiasi.ro/EEMJ/. Accessed 5 May 2018

  10. Ding C-Q, Li K-R, Duan Y-X, Jia S-R, Lv H-X, Bai H, Zhong C (2017) Study on community structure of microbial consortium for the degradation of viscose fiber wastewater. Bioresour Bioprocess 4(1):31. https://doi.org/10.1186/s40643-017-0159-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang J, Li L, Liu J, Han Y (2016) Temporal variation of microbial population in acclimation and startup period of a thermophilic desulfurization biofilter. Int Biodeterior Biodegrad 109:157–164. https://doi.org/10.1016/j.ibiod.2016.01.021

    Article  CAS  Google Scholar 

  12. Brandt KK, Patel BKC, Ingvorsen K (1999) Desulfocella halophila gen. nov., sp. nov., a halophilic, fatty-acid-oxidizing, sulfate-reducing bacterium isolated from sediments of the Great Salt Lake. Int J Syst Bacteriol 49:193–200. https://doi.org/10.1099/00207713-49-1-193

    Article  CAS  PubMed  Google Scholar 

  13. González-Cuna S, Galíndez-Mayer J, Ruiz-Ordaz N, Murugesan S, Piña-Escobedo A, García-Mena J, Lima-Martínez E, Santoyo-Tepole F (2016) Aerobic biofilm reactor for treating a commercial formulation of the herbicides 2,4-D and dicamba: biodegradation kinetics and biofilm bacterial diversity. Int Biodeterior Biodegrad 107:123–131. https://doi.org/10.1016/j.ibiod.2015.11.014

    Article  CAS  Google Scholar 

  14. García-Mena J, Murugesan S, Pérez-Muñoz AA, García-Espitia M, Maya O, Jacinto-Montiel M, Monsalvo-Ponce G, Piña-Escobedo A, Domínguez-Malfavón L, Gómez-Ramírez M, Cervantes-González E, Núñez-Cardona MT (2016) Airborne bacterial diversity from the low atmosphere of Greater Mexico City. Microb Ecol 72(1):70–84. https://doi.org/10.1007/s00248-016-0747-3

    Article  CAS  PubMed  Google Scholar 

  15. Hodge DS, Devinny JS (1995) Modeling removal of air contaminants by biofiltration. J Environ Eng 121:21–32

    Article  CAS  Google Scholar 

  16. Lund MM, Seagrave RC (1971) Optimal operation of a variable-volume stirred tank reactor. AIChE J 17(1):30–37. https://doi.org/10.1002/aic.690170110

    Article  CAS  Google Scholar 

  17. Michov BM (1978) A concentration gradient system. Anal Biochem 86:432–442. https://doi.org/10.1016/0003-2697(78)90766-2

    Article  CAS  PubMed  Google Scholar 

  18. Jungo C, Marison I, Von Stockar U (2007) Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: a quantitative study based on concentration gradients in transient continuous cultures. J Biotechnol 128:824–837. https://doi.org/10.1016/j.jbiotec.2006.12.024

    Article  CAS  PubMed  Google Scholar 

  19. Galíndez-Mayer J, Juárez-Ramírez C, López-Alcántara R, Cristiani-Urbina E, Ruiz-Ordaz N (1994) Theoretical analysis and experimental behavior of a fed-batch fermentative system with gradient feeding. Rev Lat-Am Microbiol 36:21–26

    Google Scholar 

  20. Bellavia D, Cellura D, Sisino G, Barbieri R (2008) A homemade device for linear sucrose gradients. Anal Biochem 379:211–212. https://doi.org/10.1002/bit.260190112

    Article  CAS  PubMed  Google Scholar 

  21. Reichenbach H (2006) The order Cytophagales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes, vol 7. Springer, New York, pp 549–590. https://doi.org/10.1007/0-387-30747-8_20

    Chapter  Google Scholar 

  22. Kersters K, De Vos P, Gillis M, Swings J, Vandamme P, Stackebrandt E (2006) Introduction to the Proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes, vol 5. Springer, New York, pp 3–37. https://doi.org/10.1007/0-387-30745-1_1

    Chapter  Google Scholar 

  23. Park S, Stephanopoulos G (1993) Packed bed bioreactor with porous ceramic beads for animal cell culture. Biotechnol Bioeng 41(1):25–34. https://doi.org/10.1002/bit.260410105

    Article  CAS  PubMed  Google Scholar 

  24. Harrison DEF, Pirt SJ (1967) The influence of dissolved oxygen concentration on the respiration and glucose metabolism of Klebsiella aerogenes during growth. J Gen Microbiol 46:193–211. https://doi.org/10.1099/00221287-46-2-193

    Article  CAS  PubMed  Google Scholar 

  25. Leahy JG, Olsen RH (1997) Kinetics of toluene degradation by toluene-oxidizing bacteria as a function of oxygen concentration, and the effect of nitrate. FEMS Microbiol Ecol 23(1):23–30. https://doi.org/10.1111/j.1574-6941.1997.tb00387.x

    Article  CAS  Google Scholar 

  26. Gao DW, Fu Y, Tao Y, Li XX, Xing M, Gao XH, Ren NQ (2011) Linking microbial community structure to membrane biofouling associated with varying dissolved oxygen concentrations. Bioresour Technol 102:5626–5633. https://doi.org/10.1016/j.biortech.2011.02.039

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was supported by a Grant obtained from SIP, Instituto Politécnico Nacional (SIP-IPN 20170884). The authors wish to thanks to COFAA-IPN and SNI-Conacyt for the fellowships to N. Ruiz-Ordaz, and J. Galindez-Mayer; SNI-Conacyt for fellowships to J. García-Mena; and Conacyt for the financial support of MA Salazar-Huerta.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nora Ruiz-Ordaz or Juvencio Galíndez-Mayer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar-Huerta, M.A., Ruiz-Ordaz, N., Galíndez-Mayer, J. et al. Simulation and experimental validation of a gradient feeding system for fast assessment of the kinetic behavior of a microbial consortium in a tubular biofilm reactor. Bioprocess Biosyst Eng 42, 17–27 (2019). https://doi.org/10.1007/s00449-018-2009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-2009-x

Keywords

Navigation