Skip to main content
Log in

Biodegradation of gaseous toluene with mixed microbial consortium in a biofilter: steady state and transient operation

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Petroleum oil refineries are massive emitters of risky volatile organic compounds (VOCs). Among the VOCs, toluene is taken into account as a significant pollutant. In the present study, a compost biofilter is used to treat the toluene vapor. However, an elimination capacity and removal efficiency of the biofilter was investigated for a wide range of toluene concentrations (0.29–3.8 g m−3) and operated for 54 days effectively. Elimination capacity of 93 g m−3 h−1 was recorded as maximum value at a toluene inlet concentration of 114 g m−3 h−1. An elimination capacity was perpetually better at the lower section of the biofilter, and therefore, the value was around 40–60 g m−3 h−1. The high removal efficiency of 97% was obtained at inlet toluene load of 60.55 g m−3 h−1. Hence, the biofilm was quite sensitive to handling transient loading conditions. The pressure drop had no vital impact on the biofilter performance. An Ottengraf model was applied to all phase of biofilter operation in each of the diffusion limiting region and reaction limiting region. The parameters of the model K 1 (75.95 g1/2 m−3/2 h−1) and K 0 (90.51 g m−3 h−1) were obtained from diffusion and reaction limiting region severally. However, K 1 was used to calculate the theoretical elimination capacities, and therefore, K 0 was used to discover the biofilm thickness. By the way, the average biofilm thickness was found to be 0.98 mm from reaction limiting region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

EBRT:

Empty bed residence time, sec

EC:

Elimination capacity, g m−3 h−1

IL:

Inlet loading rate, g m−3 h−1

RE:

Removal efficiency, %

K 1 :

Parameter of the model, g1/2 m−3/2 h−1

V :

Bed volume, m3

Q :

Volumetric gas flow rate, m3 h−1

C gi :

Toluene concentration at the inlet, g m−3

C go :

Toluene concentration at the outlet, g m−3

k 0 :

Zero-order kinetic constant, g m−3 h−1

D :

Toluene diffusion coefficient in the biofilm, m2 s−1

A s :

Specific surface area of the bed, m−1

K H :

Henry’s coefficient for toluene in water, dimensionless

K 0 :

Parameter of the model g m−3 h−1

δ :

Thickness of the biolayer, m

References

  1. Malakar S, Saha PD (2015) Estimation of VOC emission in petroleum refinery ETP and comparative analysis with measured VOC emission rate. Int J Eng Sci 4:20–29

    Google Scholar 

  2. Wei W, Wang S, Hao J, Cheng S (2014) Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China 2005–2020. Front Environ Sci Eng 8:27–41

    Article  CAS  Google Scholar 

  3. Mathur AK, Majumder CB (2008) Biofiltration of benzene emissions: biofilter response to variations in the pollutants inlet concentration and gas flow rate. J Sci Ind Res 67:243–248

    CAS  Google Scholar 

  4. Edokpolo B, Yu QJ, Connell D (2014) Health risk assessment of ambient air concentrations of benzene, toluene and xylene (BTX) in service station environments. Int J Environ Res Public Health 11:6354–6374

    Article  Google Scholar 

  5. Rene ER, Murthy D, Swaminathan T (2005) Performance evaluation of a compost biofilter treating toluene vapors. Process Biochem 40:2771–2779

    Article  CAS  Google Scholar 

  6. WHO (2000) Air quality guidelines for Europe, European series, no. 91, 2nd edn. WHO Regional Publication, Copenhagen, pp 1–288

    Google Scholar 

  7. Gallastegui G, Ramirez A, Elias A, Jones JP, Heitz M (2011) Performance and macrokinetic analysis of biofiltration of toluene and p-xylene mixtures in a conventional biofilter packed with inert material. Biores Technol 102:7657–7665

    Article  CAS  Google Scholar 

  8. Alagappan G, Cowan R (2003) Substrate inhibition kinetics for toluene and benzene degrading pure cultures and a method for collection of respirometric data for strongly inhibited cultures. Biotechnol Bioeng 83:798–809

    Article  CAS  Google Scholar 

  9. Du Plessis CA, Strauss JM, Riedel KHJ (2001) BTEX catabolism interactions in a toluene acclimatized biofilter. Appl Microbiol Biotechnol 55:122–128

    Article  Google Scholar 

  10. El-Naas MH, Acio JA, El Telib AE (2014) Aerobic biodegradation of BTEX: progresses and prospects. J Environ Chem Eng 2:1104–1122

    Article  CAS  Google Scholar 

  11. Rahul Mathur AK, Balomajumder C (2013) Biological treatment and modeling aspect of BTEX abatement process in a biofilter. Biores Technol 142:9–17

    Article  CAS  Google Scholar 

  12. Jihyeon S, Seungkyu S, Supjang H, Sun-Jin H (2012) Kinetics and simulations of substrate interactions during the biodegradation of benzene, toluene, p-xylene and styrene. J Environ Sci Health Part A 47:1027–1035

    Article  Google Scholar 

  13. Kennes C, Montes M, Lopez ME, Veiga MC (2009) Waste gas treatment in bioreactors: environmental engineering aspects. Can J Civ Eng 36:1887–1894

    Article  CAS  Google Scholar 

  14. Perry RH, Green DW (2008) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill Companies Inc, pp 456–457

  15. Govind R (2009) Biofiltration: an innovative technology for the future. http://www.prdtechinc.com/PDF/PRDBIOFILTERR%26DMAGAZINEPAPER.pdf. Accessed 24 July 2009 (15:43)

  16. Rahul Mathur AK, Balomajumder CB (2013) Performance evaluation and model analysis of BTEX contaminated air in corn-cob biofilter system. Biores Technol 133:166–174

    Article  CAS  Google Scholar 

  17. Padhi SK, Gokhale S (2014) Biological oxidation of gaseous VOCs—rotating biological contactor a promising and eco-friendly techniques. J Environ Chem Eng 2:2085–2102

    Article  CAS  Google Scholar 

  18. Mohamad AF, Amirreza T, Mohanadoss P, Abd Majid MZ, Tony H, Amin G (2013) Biofiltration process as an ideal approach to remove pollutants from polluted air. Desalin Water Treat 52:19–21

    Google Scholar 

  19. Elmrini H, Bredin N, Shareefdeen Z, Heitz M (2004) Biofiltration of xylene emissions: bioreactor response to variations in the pollutant inlet concentration and gas flow rate. Chem Eng J 100:149–158

    Article  CAS  Google Scholar 

  20. Sakunthala M, Sridevi V, Chandana lakshmi MVV, Vijay kumar K (2013) A review: the description of three different biological filtration processes and economic evaluation. J Environ Sci Comput Sci Eng Technol 2:91–99

    Google Scholar 

  21. Arulneyam D, Swaminathan T (2004) Biodegradation of mixture of VOCs in a biofilter. J Environ Sci 16:30–33

    CAS  Google Scholar 

  22. Zare H, Najafpour G, Rahimnejad M, Tardast A, Gilani S (2012) Biofiltration of ethyl acetate by Pseudomonas putida immobilized on walnut shell. Biores Technol 123:419–423

    Article  CAS  Google Scholar 

  23. Anet B, Couriol C, Lendormi T, Amrane A, Le Cloirec P, Cogny G, Fillières R (2013) Characterization and selection of packing materials for biofiltration of rendering odorous emissions. Water Air Soil Pollut 224:1–13

    Article  CAS  Google Scholar 

  24. Dorado AD, Lafuente FJ, Gabriel D, Gamisans X (2010) A comparative study based on physical characteristics of suitable packing materials in biofiltration. Environ Technol 31:193–204

    Article  CAS  Google Scholar 

  25. Lebrero R, Estrada JM, Munoz R, Quijano G (2014) Deterioration of organic packing materials commonly used in air biofiltration: effect of VOC-packing interactions. J Environ Manag 137:93–100

    Article  CAS  Google Scholar 

  26. Zilli M, Borghi MD, Converti A (2002) Toluene vapors removal in a laboratory-scale biofilter. Appl Microbiol Biotechnol 54:248–254

    Article  Google Scholar 

  27. Xi J, Hu HY, Qian Y (2006) Effect of operating conditions on long-term performance of a biofilter treating gaseous toluene: biomass accumulation and stable-run time estimation. Biochem Eng J 31:165–172

    Article  CAS  Google Scholar 

  28. Cho E, Galera MM, Lorenzana A, Chung WJ (2009) Ethylbenzene, o-Xylene, and BTEX removal by Sphingomonas sp. D3K1 in rock wool compost biofilters. Environ Eng Sci 26:45–52

    Article  CAS  Google Scholar 

  29. Aly Hassan A, Sorial G (2009) Biological treatment of benzene in a controlled trickle bed air biofilter. Chemosphere 75:1315–1321

    Article  CAS  Google Scholar 

  30. Singh RS, Rai BN, Upadhyay SN (2010) Removal of toluene vapors from air stream using a biofilter packed with polyurethane foam. Process Saf Environ Prot 88:366–371

    Article  CAS  Google Scholar 

  31. Zhu Y, Li S, Luo Y, Ma H, Wang Y (2016) A biofilter for treating toluene vapors: performance evaluation and microbial counts behavior. PeerJ 4:2045

    Article  Google Scholar 

  32. Singh K, Singh RS, Rai BN, Upadhyay SN (2010) Biofiltration of toluene using wood charcoal as the biofilter media. Biores Technol 101:3947–3951

    Article  CAS  Google Scholar 

  33. Zamir SM, Halladj R, Nasernejad B (2011) Removal of toluene vapors using a fungal biofilter under intermittent loading. Process Saf Environ Prot 89:8–14

    Article  CAS  Google Scholar 

  34. Rene ER, Murthy DVS, Swaminathan T (2010) Steady and transient-state effects during the biological oxidation of gas-phase benzene in a continuously operated biofilter. Clean Technol Environ Policy 12:525–535

    Article  CAS  Google Scholar 

  35. Cheng Z, Lu L, Kennes C, Yu J, Chen J (2016) Treatment of gaseous toluene in three biofilters inoculated with fungi/bacteria: microbial analysis, performance and starvation response. J Hazard Mater 303:83–93

    Article  CAS  Google Scholar 

  36. Zarook SM, Shaikh AA, Ansar Z (1997) Development, experimental validation and dynamic analysis of a general transient biofilter model. Chem Eng Sci 52:759–773

    Article  CAS  Google Scholar 

  37. Ottengraf SPP, Van Den Oever AHC (1983) Kinetics of organic compound removal from waste gases with a biological filter. Biotechnol Bioeng 25:3089–3102

    Article  CAS  Google Scholar 

  38. Saravanan V, Rajamohan N (2009) Treatment of xylene polluted air using press mud based biofilter. J Hazard Mater 162:981–988

    Article  CAS  Google Scholar 

  39. Sene L, Converti A, Felipe MGA (2002) Sugarcane bagasse as alternative packing material for biofiltration of benzene polluted gaseous streams: a preliminary study. Biores Technol 83:153–157

    Article  CAS  Google Scholar 

  40. Ortiz I, Revah S, Auria S (2002) effects of packing material on the biofiltration of benzene, toluene and xylene vapors. Environ Technol 24:265–275

    Article  Google Scholar 

  41. Rajamanickam R, Kaliyamoorthi K, Ramachandran N, Baskaran D, Krishnan J (2016) Batch biodegradation of toluene by mixed microbial consortia and its kinetics. Int Biodeterior Biodegrad 119:282–288

    Article  Google Scholar 

  42. Cox HHJ, Deshusses MA (2002) Co-treatment of H2S and toluene in a biotrickling filter. Chem Eng Sci 87:101–110

    Article  CAS  Google Scholar 

  43. Fitch MW, Ellen E, Zhang B (2002) 1-Butanol removal from a contaminated airstream under continuous and diurnal loading conditions. J Air Waste Manag Assoc 52:1288–1297

    Article  CAS  Google Scholar 

  44. Devinny JS, Deshusses MA, Webster TS (1999) Biofiltration for air pollution control. Lewis Publisher, Boca Raton, p 318

    Google Scholar 

  45. Delhomenie MC, Bibeau L, Heitz M (2002) A study of the impact of particle size and adsorption phenomena in a compost-based biological filter. Chem Eng Sci 57:4999–5010

    Article  CAS  Google Scholar 

  46. Sun YM, Quan X, Chen JW, Yang FL, Xue DM, Liu YH, Yang ZH (2002) Toluene vapors degradation and microbial community in biofilter at various moisture content. Process Biochem 38:109–113

    Article  CAS  Google Scholar 

  47. Eldon RR, Balsam TM, Maria CV, Kennes C (2012) Biodegradation of BTEX in a fungal biofilter: influence of operational parameters, effect of shock-loads and substrate stratification. Biores Technol 116:204–213

    Article  Google Scholar 

  48. Maestre JP, Gamisans X, Gabriel D, Lafuente J (2007) Fungal biofilters for toluene biofiltration: evaluation of the performance with four packing materials under different operating condition. Chemosphere 67:684–692

    Article  CAS  Google Scholar 

  49. Shi J, Severin BF, Neilson LM, Cybul BG, Furstenberg J, Steffke E, Kim BJ (1995) Simulation of steady state and dynamic loading of a coatings process VOC (ethylacetate); treatment by engineered media biofiltration. In: Hodge DS, Reynolds FE Jr (eds) Proceedings of the 1995 USC-TRG conference on biofiltration. Los Angeles, pp 151–164

  50. Metris A, Gerrard M, Cumming RH, Weinger P, Paca J (2001) Modelling shock loadings and starvation in the biofiltration of toluene and xylene. J Chem Technol Biotechnol 76:565–572

    Article  CAS  Google Scholar 

  51. Barona A, Elias A, Arias R, Cano I, Gonzalez R (2004) Biofilter response to gradual and sudden variations in operating conditions. Biochem Eng J 22:25–31

    Article  CAS  Google Scholar 

  52. Skelland AHP (1974) Diffusional mass transfer. Wiley-Interscience Publication, New York (chapter 3)

    Google Scholar 

  53. Lide DR (1992) Handbook of chemistry and physics. CRC Press, Ann Arbor, pp 6–73 (72 Auflage)

    Google Scholar 

  54. Muhammad Q, Zarook S (2013) Analysis of a recent biofilter model for toluene biodegradation. Adv Chem Eng Sci 3:57–66

    Article  Google Scholar 

  55. Singh RS, Rai BN, Upadhyay SN (2006) Performance evaluation of an agro waste based biofilter treating toluene vapors. Environ Technol 27:349–357

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are very thankful to Department of Chemical Engineering, Annamalai University for all the support provided to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Rajamanickam.

Ethics declarations

Funding

This study was funded by University Grants Commission-Major Research Project (43-329/2014, UGC-MRF).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajamanickam, R., Baskaran, D. Biodegradation of gaseous toluene with mixed microbial consortium in a biofilter: steady state and transient operation. Bioprocess Biosyst Eng 40, 1801–1812 (2017). https://doi.org/10.1007/s00449-017-1834-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1834-7

Keywords

Navigation