Skip to main content
Log in

Assessment of type II diabetes mellitus using irregularly sampled measurements with missing data

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Diabetes mellitus is one of the leading diseases in the developed world. In order to better regulate blood glucose in a diabetic patient, improved modelling of insulin-glucose dynamics is a key factor in the treatment of diabetes mellitus. In the current work, the insulin-glucose dynamics in type II diabetes mellitus can be modelled by using a stochastic nonlinear state-space model. Estimating the parameters of such a model is difficult as only a few blood glucose and insulin measurements per day are available in a non-clinical setting. Therefore, developing a predictive model of the blood glucose of a person with type II diabetes mellitus is important when the glucose and insulin concentrations are only available at irregular intervals. To overcome these difficulties, we resort to online sequential Monte Carlo (SMC) estimation of states and parameters of the state-space model for type II diabetic patients under various levels of randomly missing clinical data. Our results show that this method is efficient in monitoring and estimating the dynamics of the peripheral glucose, insulin and incretins concentration when 10, 25 and 50 % of the simulated clinical data were randomly removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. A response model is a mathematical model describing the dynamics of the key internal states of a patient in response to a clinical test.

Abbreviations

\(G\) :

Glucose concentration (mg/dl)

\(M\) :

Multiplier of metabolic rates (dimensionless)

\(Q\) :

Vascular blood flow rate (dl/min)

\(r\) :

Metabolic production or consumption rate (mg/min)

\(T\) :

Transcapillary diffusion time constant (min)

\(t\) :

Time (min)

\(V\) :

Volume (dl)

\(I\) :

Insulin concentration (mU/l)

\(M\) :

Multiplier of metabolic rates (dimensionless)

\(m\) :

Labile insulin mass (U)

\(P\) :

Potentiator (dimensionless)

\(Q\) :

Vascular blood flow rate (dl/min)

\(R\) :

Inhibitor (dimensionless)

\(r\) :

Metabolic production or consumption rate (mU/min)

\(S\) :

Insulin secretion rate (U/min)

\(T\) :

Transcapillary diffusion time constant (min)

\(t\) :

Time (min)

\(V\) :

Volume (dl)

\(X\) :

Glucose-enhanced excitation factor (dimensionless)

\(Y\) :

Intermediate variable (dimensionless)

\(\Gamma\) :

Normalized glucagon concentration (dimensionless)

\(M\) :

Multiplier of metabolic rates (dimensionless)

\(r\) :

Metabolic production or consumption rate (dl/min)

\(t\) :

Time (min)

\(V\) :

Volume (dl)

\(\Psi\) :

Incretins concentration (pmol/l)

\(r\) :

Metabolic production or consumption rate (pmol/min)

\(t\) :

Time (min)

\(V\) :

Volume (dl)

\(\Gamma\) :

Glucagon

\(M\) :

Incretins

\(B\) :

Basal condition

\(G\) :

Glucose

\(I\) :

Insulin

\(\infty\) :

Final steady state value

\(BGU\) :

Brain glucose uptake

\(GGU\) :

Gut glucose uptake

\(HGP\) :

Hepatic glucose production

\(HGU\) :

Hepatic glucose uptake

\(I\Psi R\) :

Intestinal incretins release

\(KGE\) :

Kidney glucose excretion

\(KIC\) :

Kidney insulin clearance

\(LIC\) :

Liver insulin clearance

\(M\Gamma C\) :

Metabolic glucagon clearance

\(P\Gamma C\) :

Plasma glucagon clearance

\(P\Psi C\) :

Plasma incretins clearance

\(P\Gamma R\) :

Pancreatic glucagon release

\(PGU\) :

Peripheral glucose uptake

\(PIC\) :

Peripheral insulin clearance

\(PIR\) :

Pancreatic insulin release

\(RBCU\) :

Red blood cell glucose uptake

\(\infty\) :

Final steady state value

\(A\) :

Hepatic artery

\(B\) :

Brain

\(G\) :

Gut

\(L\) :

Liver

\(P\) :

Periphery

\(S\) :

Stomach

\(C\) :

Capillary space

\(F\) :

Interstitial fluid space

\(l\) :

Liquid

\(s\) :

Solid

References

  1. Canadian Diabetes Association (2009) Diabetes facts

  2. Groop LC, Widen E, Ferrannini E (1993) Insulin resistance and insulin deficiency in the pathogenesis of Type 2 (non-insulin-dependent) diabetes mellitus: errors of metabolism or of methods. Diabetologia 36:1326–1331

    Article  CAS  Google Scholar 

  3. Basu A et al (2000) Effects of type 2 diabetes on the ability of insulin and glucose to regulate splanchnic and muscle glucose metabolism: evidence for a defect in hepatic glucokinase activity. Diabetes 49:272–283

    Article  CAS  Google Scholar 

  4. DeFronzo RA (1988) Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37:667–687

    Article  CAS  Google Scholar 

  5. Vahidi O, Gopaluni RB, Kwok KE (2011) Detection of organ dysfunction in type II diabetic patients. American Control Conference (ACC) 3:4769–4774

    Google Scholar 

  6. Rajak A, Saxena K (2010) Achieving realistic and interactive clinical simulation using case based TheraSim’s therapy engine dynamically. In: Proceedings of the National Conference

  7. Machan CM (2012) Type 2 diabetes mellitus and the prevalence of age-related cataract in a clinic population. Thesis, University of Waterloo, MSc

  8. Wei WQ et al (2012) The absence of longitudinal data limits the accuracy of high-throughput clinical phenotyping for identifying type 2 diabetes mellitus subjects. Int J Med Inform 82:239–247

    Article  Google Scholar 

  9. Briegel T, Tresp V (2002) A nonlinear state space model for the blood glucose metabolism of a diabetic (Ein nichtlineares Zustandsraummodell fur den Blutglukosemetabolismus eines Diabetik-ers). at-Automatisierungstechnik 50.5

  10. Tresp V, Briegel T (1998) A solution for missing data in recurrent neural networks with an application to blood glucose prediction. Adv Neural Inf Process Syst 10:971–977

    Google Scholar 

  11. Tresp V, Briegel T, Moody J (1999) Neural-network models for the blood glucose metabolism of a diabetic. In: Neural Networks, IEEE 10.5

  12. El-Jabali AK (2005) Neural network modeling and control of type 1 diabetes mellitus. Bioprocess Biosyst Eng 27:75–79

    Article  CAS  Google Scholar 

  13. Mougiakakou SG (2006) Neural network based glucose-insulin metabolism models for children with type 1 diabetes. Medicine

  14. Bergman RN, Phillips LS, Cobelli C (1981) Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Investig 68(6):1456

    Article  CAS  Google Scholar 

  15. Sorensen JT (1985) A Physiological Model of Glucose Metabolism in Man and its Use to De- sign and Assess Improved Insulin Therapies for Diabetes. PhD thesis. Ph.D. Thesis, Massachusetts Institute of Technology

  16. Vahidi O et al (2011) Developing a physiological model for type II diabetes mellitus. Biochem Eng J 55:7–16

    Article  CAS  Google Scholar 

  17. Vahidi O (2013) Dynamic modeling of glucose metabolism for the assessment of type II diabetes mellitus. PhD Thesis. The University of British Columbia

  18. Khatibisepehr S, Huang B (2008) Dealing with irregular data in soft sensors: Bayesian method and comparative study. Ind Eng Chem Res 47(22):8713–8723

    Article  CAS  Google Scholar 

  19. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodological) 39(1):1–38

    Google Scholar 

  20. Gopaluni RB (2008) A particle fillter approach to identification of nonlinear processes under missing observations. Can J Chem Eng 86(6):1081–1092

    Article  CAS  Google Scholar 

  21. Deng J, Huang B (2011) Bayesian method for identification of constrained nonlinear processes with missing output data. Am Control Conf 3:96–101

    Google Scholar 

  22. Pillonetto G et al (2002) Minimal model S(I)=0 problem in NIDDM subjects: nonzero Bayesian estimates with credible confidence intervals. Am J Physiol Endocrinol Metab 282(3):E564–E573

    Article  CAS  Google Scholar 

  23. Cobelli C, Caumo A, Omenetto M (1999) Minimal model SG overestimation and SI underestimation: improved accuracy by a Bayesian two-compartment model. Am J Physiol 277(3):E481–E488

    CAS  Google Scholar 

  24. Sparacino G (2000) Maximum-likelihood versus maximum a posteriori parameter estimation of physiolog- ical system models: the C-peptide impulse response case study. IEEE Trans 47(6):801–811

    CAS  Google Scholar 

  25. Tulsyan A et al (2013) On simultaneous on-line state and parameter estimation in non-linear state- space models. J Process Control 23(4):516–526

    Article  CAS  Google Scholar 

  26. Ekram F (2012) A feedback glucose control strategy for type II diabetes mellitus based on fuzzy logic. Can J Chem Eng 90:1411–1417

    Article  CAS  Google Scholar 

  27. Vahidi O, Kwok KE (2010) Development of a physiological model forpatients with type 2 diabetes mellitus. Control Conference (ACC)

  28. Man CD, Camilleri M, Cobelli C (2006) A system model of oral glucose absorption: validation on gold standard data. IEEE Trans Biomed Eng 53(12):2472–2478

    Article  Google Scholar 

  29. Filip KK et al (2007) Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes 56(8):1951–1959

    Article  Google Scholar 

  30. Knop FK et al (2007) Inappropriate suppression of glucagon during OGTT but not during isoglycaemic i.v. glucose infusion contributes to the reduced incretin effect in type 2 diabetes mellitus. Diabetologia 50(4):797–805

    Article  CAS  Google Scholar 

  31. Gardner IA (2002) The utility of Bayes theorem and Bayesian inference in veterinary clinical practice and research. Aust Vet J 80(12):758–761

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Omid Vahidi for suggestions and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezra Kwok.

Appendix

Appendix

Glucose sub-model

The mass balance equation over each compartment in the glucose sub-model results in following equations:

$$\begin{aligned} V{^G_{\rm BC}} \frac{\mathrm{d}G_{\rm BC}}{\mathrm{d}t}= Q{^G_{B}}(G _{H}-G_{\rm BC})-\frac{V{^G_{\rm BF}}}{T{^G_{B}}}(G _{\rm BC}-G_{\rm BF}), \end{aligned}$$
(7.1)
$$\begin{aligned} V{^G_{\rm BF}} \frac{\mathrm{d}G_{\rm BF}}{\mathrm{d}t}= \frac{V{^G_{\rm BF}}}{T{^G_{B}}}(G _{\rm BC}-G_{\rm BF})-r_{\rm BGU}, \end{aligned}$$
(7.2)
$$\begin{aligned} V{^G_{H}} \frac{\mathrm{d}G_{H}}{\mathrm{d}t}= Q{^G_{B}}G_{\rm BC}+Q{^G_{L}}G_{L}+Q{^G_{K}}G_{K}+Q{^G_{P}}G_{\rm PC}+Q{^G_{H}}G_{H}-r_{\rm BCU}, \end{aligned}$$
(7.3)
$$\begin{aligned} V{^G_{G}} \frac{\mathrm{d}G_{G}}{\mathrm{d}t}= Q{^G_{G}}(G _{H}-G_{G})-r_{\rm GGU}+Ra, \end{aligned}$$
(7.4)
$$\begin{aligned} V{^G_{L}} \frac{\mathrm{d}G_{L}}{\mathrm{d}t}= Q{^G_{A}}G_{H}+Q{^G_{G}}G_{G}-Q{^G_{L}}G_{L}+r_{\rm HGP}-r_{\rm HGU}, \end{aligned}$$
(7.5)
$$\begin{aligned} V{^G_{K}} \frac{\mathrm{d}G_{K}}{\mathrm{d}t}= Q{^G_{K}}(G _{H}-G_{K})-r_{\rm KGE}, \end{aligned}$$
(7.6)
$$\begin{aligned} V{^G_{\rm PC}} \frac{\mathrm{d}G_{\rm PC}}{\mathrm{d}t}= Q{^G_{P}}(G _{H}-G_{\rm PC})-\frac{V{^G_{\rm PF}}}{T{^G_{P}}}(G _{\rm PC}-G_{\rm PF}), \end{aligned}$$
(7.7)
$$\begin{aligned} V{^G_{\rm PF}} \frac{\mathrm{d}G_{\rm PF}}{\mathrm{d}t}= \frac{V{^G_{\rm PF}}}{T{^G_{P}}}(G _{\rm PC}-G_{\rm PF})-r_{\rm PGU}, \end{aligned}$$
(7.8)

A detailed description about the metabolic rates is available in [15]. The general form of the metabolic production and consumption rates in each organ is as follows:

$$\begin{aligned} r= M^IM^GM^{\Gamma }M^B, \end{aligned}$$
(7.9)

and multipliers have the following general form:

$$\begin{aligned} M^C= a+b\tanh \left( \frac{C}{C^B}-d\right) , \end{aligned}$$
(7.10)

The glucose absorption model that calculates the glucose appearance rate into the blood stream following an oral glucose intake is considered in the gut compartment of the glucose sub-model as follows:

$$\begin{aligned} \frac{\mathrm{d}q_{\rm Ss}}{\mathrm{d}t}= -k_{12}q_{\rm Ss}+\delta (t), \end{aligned}$$
(7.11)
$$\begin{aligned} \frac{\mathrm{d}q_{\rm SI}}{\mathrm{d}t}= -k_{\rm empt}q_{\rm Ss}+k_{12}q_{\rm SI}, \end{aligned}$$
(7.12)
$$\begin{aligned} \frac{\mathrm{d}q_{\rm int}}{\mathrm{d}t}= -k_{\rm abs}q_{\rm int}+k_{\rm empt}q_{\rm SI}, \end{aligned}$$
(7.13)
$$\begin{aligned} k_{\rm empt}=k_{\rm min}+\frac{k_{\rm max}-k_{\rm min}}{2}\{\tanh [\varphi _1(q_{\rm Ss}+q_{\rm SI}-x_{1}D)]-\tanh [\varphi _2(q_{\rm Ss}+q_{\rm SI}-x_{2}D)]\}+2, \end{aligned}$$
(7.14)
$$\begin{aligned} \varphi _1= \frac{5}{2D(1-x_1)}, \end{aligned}$$
(7.15)
$$\begin{aligned} \varphi _2= \frac{5}{2Dx_2}, \end{aligned}$$
(7.16)
$$\begin{aligned} Ra= fk_{\rm abs}q_{\rm int}, \end{aligned}$$
(7.17)

Incretins sub-model

The incretins production is calculated from the following differential equation:

$$\begin{aligned} \frac{\mathrm{d}\psi }{\mathrm{d}t}= \varsigma k_{\rm empt}q_{S2}-r_{I\Psi P}, \end{aligned}$$
(7.18)
$$\begin{aligned} r_{I\Psi P}= f\frac{\psi }{\tau \psi }, \end{aligned}$$
(7.19)

The mass balance equation over the incretins compartment results in:

$$\begin{aligned} \frac{\mathrm{d}\psi }{\mathrm{d}t}= \varsigma k_{empt}q_{S2}-r_{I\Psi P}, \end{aligned}$$
(7.20)
$$\begin{aligned} r_{P\Psi C}= r_{M\Psi C}\psi , \end{aligned}$$
(7.21)

Insulin sub-model

The mass balance equation over the compartments in the insulin sub-model results in following equations:

$$\begin{aligned} V{^I_{B}} \frac{\mathrm{d}I_{B}}{\mathrm{d}t}= Q{^I_{B}}(I _{H}-I_{B}), \end{aligned}$$
(7.22)
$$\begin{aligned} V{^I_{H}} \frac{\mathrm{d}I_{H}}{\mathrm{d}t}= Q{^I_{B}}I_{B}+Q{^I_{L}}I_{L}+Q{^I_{K}}I_{K}+Q{^I_{P}}I_{PV}-Q{^I_{H}}I_{H}, \end{aligned}$$
(7.23)
$$\begin{aligned} V{^I_{G}} \frac{\mathrm{d}I_{G}}{\mathrm{d}t}= Q{^I_{G}}(I_{H}-I_{G}), \end{aligned}$$
(7.24)
$$\begin{aligned} V{^I_{L}} \frac{\mathrm{d}I_{L}}{\mathrm{d}t}= Q{^I_{A}}I_{H}+Q{^I_{G}}I_{G}-Q{^I_{L}}I_{L}+r_{\rm PIR}-r_{\rm LIC}, \end{aligned}$$
(7.25)
$$\begin{aligned} V{^I_{K}} \frac{\mathrm{d}I_{K}}{\mathrm{d}t}= Q{^I_{K}}(I _{H}-I_{K})-r_{\rm KIC}, \end{aligned}$$
(7.26)
$$\begin{aligned} V{^I_{\rm PC}} \frac{\mathrm{d}I_{\rm PC}}{\mathrm{d}t}= Q{^I_{P}}(I _{H}-I_{\rm PC})-\frac{V{^I_{\rm PF}}}{T{^I_{P}}}(I _{\rm PC}-I_{\rm PF}), \end{aligned}$$
(7.27)
$$\begin{aligned} V{^I_{\rm PF}} \frac{\mathrm{d}I_{\rm PF}}{\mathrm{d}t}= \frac{V{^I_{\rm PF}}}{T{^I_{P}}}(I _{\rm PC}-I_{\rm PF})-r_{\rm PIC}, \end{aligned}$$
(7.28)

The pancreas model contains two compartments. The pancreas model equations include mass balance equations over compartments and correlations between variables. The mass balance equation over each compartment results in:

$$\begin{aligned} \frac{\mathrm{d}m}{\mathrm{d}t}= K'm _S Km+\gamma P-S, \end{aligned}$$
(7.29)
$$\begin{aligned} \frac{\mathrm{d}m_S}{\mathrm{d}t}= Km-K'm _S-\gamma P, \end{aligned}$$
(7.30)

The steady state mass balance equation around the storage compartment is:

$$\begin{aligned} K'm _S= Km_0, \end{aligned}$$
(7.31)

where \(m_0\) is the labile insulin quantity at a glucose concentration of zero. The rest of the equations for the pancreas model are:

$$\begin{aligned} \frac{\mathrm{d}P}{\mathrm{d}t}= \alpha (P_\infty -P), \end{aligned}$$
(7.32)
$$\begin{aligned} \frac{\mathrm{d}R}{\mathrm{d}t}= \beta (X-R), \end{aligned}$$
(7.33)
$$\begin{aligned} \begin{aligned} S= [N_1Y+N_2(X-R)+\xi _1\psi ]m\,\quad x>R,\\ S= [N_1Y+\xi _1\psi ]m\,\quad\,x\le R, \end{aligned} \end{aligned}$$
(7.34)
$$\begin{aligned} P_\infty =Y= X^{1.11}+\xi _2\psi , \end{aligned}$$
(7.35)
$$\begin{aligned} X=\frac{G{^{3.27}_{H}}}{{132}^{3.27}+5.93 G{^{3.02}_{H}}} \end{aligned}$$
(7.36)

Glucagon sub-model

The glucagon sub-model has one mass balance equation over the whole body as follows:

$$\begin{aligned} V^{\Gamma } \frac{\mathrm{d}\Gamma }{\mathrm{d}t}= r_{P\Gamma R}-r_{P\Gamma C}, \end{aligned}$$
(7.37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barazandegan, M., Ekram, F., Kwok, E. et al. Assessment of type II diabetes mellitus using irregularly sampled measurements with missing data. Bioprocess Biosyst Eng 38, 615–629 (2015). https://doi.org/10.1007/s00449-014-1301-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1301-7

Keywords

Navigation