Skip to main content
Log in

Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (Q AIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (ε G) and volumetric oxygen transfer coefficient (k L a) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. Q AIR and  %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence k L a. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher  %S, SCA presented a higher k L a value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for  %S < 10.0 g L−1 and Q AIR > 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Macrelli S, Mogensen J, Zacchi G (2012) Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechol Biofuels 5:22

    Article  Google Scholar 

  2. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym Microb Technol 46:541–549

    Article  CAS  Google Scholar 

  3. Gabelle JC, Jourdier E, Licht RB, Ben Chaabane F, Henaut I, Morchain J, Augier F (2012) Impact of rheology on the mass transfer coefficient during the growth phase of Trichoderma reesei in stirred bioreactors. Chem Eng Sci 75:408–417

    Article  CAS  Google Scholar 

  4. Schell DJ, Farmer J, Hamilton J, Lyons B, McMillan JD, Saez JC, Tholudar A (2001) Influence of operating conditions and vessel size on oxygen transfer during cellulase production. Appl Biochem Biotechol 91–3:627–642

    Article  Google Scholar 

  5. Yu L, Chao YP, Wensel P, Chen SL (2012) Hydrodynamic and kinetic study of cellulase production by Trichoderma reesei with pellet morphology. Biotechnol Bioeng 109:1755–1768

    Article  CAS  Google Scholar 

  6. Cunha FM, Esperanca MN, Zangirolami TC, Badino AC, Farinas CS (2012) Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Bioresour Technol 112:270–274

    Article  CAS  Google Scholar 

  7. Kim SW, Kang SW, Lee JS (1997) Cellulase and xylanase production by Aspergillus niger KKS in various bioreactors. Bioresour Technol 59:63–67

    Article  CAS  Google Scholar 

  8. Trager M, Qazi GN, Onken U, Chopra CL (1989) Comparison of airlift and stirred reactors for fermentation with Aspergillus niger. J Ferment Bioeng 68:112–116

    Article  Google Scholar 

  9. Cerri M, Badino AC (2010) Oxygen transfer in three scales of concentric tube airlift bioreactors. Biochem Eng J 51:40–47

    Article  CAS  Google Scholar 

  10. Ahamed A, Vermette P (2010) Effect of mechanical agitation on the production of cellulases by Trichoderma reesei RUT-C30 in a draft-tube airlift bioreactor. Biochem Eng J 49:379–387

    Article  CAS  Google Scholar 

  11. Siedenberg D, Gerlach SR, Czwalinna A, Schugerl K, Giuseppin MLF, Hunik J (1997) Production of xylanase by Aspergillus awamori on complex medium in stirred tank and airlift tower loop reactors. J Biotechnol 56:205–216

    Article  CAS  Google Scholar 

  12. Freitas C, Teixeira JA (1998) Hydrodynamic studies in an airlift reactor with an enlarged degassing zone. Bioprocess Eng 18:267–279

    Article  CAS  Google Scholar 

  13. Freitas C, Teixeira JA (2001) Oxygen mass transfer in a high solids loading three-phase internal-loop airlift reactor. Chem Eng J 84:57–61

    Article  CAS  Google Scholar 

  14. Feng W, Wen JP, Fan JH, Yuan Q, Jia XQ, Sun Y (2005) Local hydrodynamics of gas–liquid-nanoparticles three-phase fluidization. Chem Eng Sci 60:6887–6898

    Article  CAS  Google Scholar 

  15. Klein J, Vicente AA, Teixeira JA (2003) Hydrodynamic considerations on optimal design of a three-phase airlift bioreactor with high solids loading. J Chem Technol Biotechnol 78:935–944

    Article  CAS  Google Scholar 

  16. Sanchez OIA, Matsumoto T (2012) Hydrodynamic characterization and performance evaluation of an aerobic three phase airlift fluidized bed reactor in a recirculation aquaculture system for Nile Tilapia production. Aquac Eng 47:16–26

    Article  Google Scholar 

  17. Jajuee B, Margaritis A, Karamanev D, Bergougnou MA (2006) Mass transfer characteristics of a novel three-phase airlift contactor with a semipermeable membrane. Chem Eng J 125:119–126

    Article  CAS  Google Scholar 

  18. Bang W, Nikov I, Delmas H, Bascoul A (1998) Gas–liquid mass transfer in a new three-phase stirred airlift reactor. J Chem Technol Biotechnol 72:137–142

    Article  CAS  Google Scholar 

  19. Zhang K, Qi N, Jin J, Lu C, Zhang H (2010) Gas holdup and bubble dynamics in a three-phase internal loop reactor with external slurry circulation. Fuel 89:1361–1369

    Article  CAS  Google Scholar 

  20. Rostami K, Fu WG, Moo-Young M (2005) Mass transfer studies in stirred airlift reactor. Chem Eng Commun 192:108–124

    Article  CAS  Google Scholar 

  21. Maeda RN, Serpa VI, Rocha VAL, Mesquita RAA, Santa Anna LMM, de Castro AM, Driemeier CE, Pereira N, Polikarpov I (2011) Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem 46:1196–1201

    Article  CAS  Google Scholar 

  22. de Castro AM, de Carvalho MLD, Leite SGF, Pereira N (2010) Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J Ind Microbiol Biotechnol 37:151–158

    Article  CAS  Google Scholar 

  23. Singh R, Varma AJ, Seeta Laxman R, Rao M (2009) Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase. Bioresour Technol 100:6679–6681

    Article  CAS  Google Scholar 

  24. Montgomery DC (2001) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  25. Chisti Y (1989) Airlift bioreactors. Elsevier Science Publishers Ltd., Belfast

    Google Scholar 

  26. Aiba S, Humphrey AE, Millis NF (1973) Biochemical engineering. University of Tokio Press, Tokio

    Google Scholar 

  27. Liu M, Zhang T, Wang T, Wang J, Jin Y (2006) Flow behavior and mass transfer in three-phase external-loop airlift reactors with large particles. China Part 4:178–182

    Article  CAS  Google Scholar 

  28. Thomasi S, Cerri MO, Badino AC (2010) Average shear rate in three pneumatic bioreactors. Bioprocess Biosyst Eng 33:979–988

    Article  CAS  Google Scholar 

  29. Klein J, Rosenberg M, Markos J, Dolgos O, Kroslak M, Kristofikova L (2002) Biotransformation of glucose to gluconic acid by Aspergillus niger—study of mass transfer in an airlift bioreactor. Biochem Eng J 10:197–205

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by FAPESP (São Paulo State Research Foundation, processes 2008/56246-0 and 2011/23807-1) and the Brazilian agencies CAPES and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Badino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esperança, M.N., Cunha, F.M., Cerri, M.O. et al. Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions. Bioprocess Biosyst Eng 37, 805–812 (2014). https://doi.org/10.1007/s00449-013-1049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1049-5

Keywords

Navigation