Skip to main content

Advertisement

Log in

Nonlinear predictive control for maximization of CO2 bio-fixation by microalgae in a photobioreactor

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In the framework of environment preservation, microalgae biotechnology appears as a promising alternative for CO2 mitigation. Advanced control strategies can be further developed to maximize biomass productivity, by maintaining these microorganisms in bioreactors at optimal operating conditions. This article proposes the implementation of Nonlinear Predictive Control combined with an on-line estimation of the biomass concentration, using dissolved carbon dioxide concentration measurements. First, optimal culture conditions are determined so that biomass productivity is maximized. To cope with the lack of on-line biomass concentration measurements, an interval observer for biomass concentration estimation is built and described. This estimator provides a stable accurate interval for the state trajectory and is further included in a nonlinear model predictive control framework that regulates the biomass concentration at its optimal value. The proposed methodology is applied to cultures of the microalgae Chlorella vulgaris in a laboratory-scale continuous photobioreactor. Performance and robustness of the proposed control strategy are assessed through experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    Article  CAS  Google Scholar 

  2. Sydney E, Sturm W, Carvalho J, Thomaz-Soccol V, Larroche C, Pandey A, Soccol C (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 101:5892–5896

    Article  CAS  Google Scholar 

  3. Huntley M, Redalje D (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Change 12:573–608

    Article  Google Scholar 

  4. de Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445

    Article  Google Scholar 

  5. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malacata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions—a review. Trends Biotechnol 28(7):371–380

    Article  CAS  Google Scholar 

  6. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  7. Chen C-Y, Yeh K-L, Aisyah R, Lee DJ, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  Google Scholar 

  8. Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50:324–329

    Article  CAS  Google Scholar 

  9. Ho SH, Chen CY, Lee DJJS, Chang JS (2011) Perspectives on microalgal CO2-emission mitigation systems—A review. Biotechnol Adv 29(2):189–198

    Article  CAS  Google Scholar 

  10. Stewart C, Hessami M-A (2005) A study of methods of carbon dioxide capture and sequestration – the sustainability of a photosynthetic bioreactor approach. Energy Cover Manag 46(3):403–420

    Article  CAS  Google Scholar 

  11. Garcia LM, Garcia AI, Moràn A (2007) Isolation and selection of microalgae species for the CO2 bio-fixation. J Biotechnol 131(2):S124

    Article  Google Scholar 

  12. Keffer JE, Kleinheinz GT (2002) Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor. J Ind Microbiol Biotechnol 29:275–280

    Article  CAS  Google Scholar 

  13. Zame KK (2003) Carbon capture using the microalgae Chlorella Vulgaris in a packed bubble column photobioreactor. PhD thesis, Youngstown State University, USA

  14. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  CAS  Google Scholar 

  15. Suh IS, Lee CG (2003) Photobioreactor engineering: design and performance. Biotech Bioprocess Eng 8:313–321

    Article  CAS  Google Scholar 

  16. Kim W, Park JM, Gim GH, Jeong S-H, Kang CM, Kim D-J, Kim SW (2012) Optimization of culture conditions and comparison of biomass productivity of three green algae. Bioprocess Biosyst Eng 35:19–27

    Article  CAS  Google Scholar 

  17. Pruvost J, Van vooren G, Le Gouic B, Couzinet-Mossion A, Legrand J (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol 102:150–158

    Article  CAS  Google Scholar 

  18. Bastin G, Dochain D (1990) On-line estimation and adaptive control of bioreactor, Process Measurement and Control, vol 1. Elsevier, Amsterdam

    Google Scholar 

  19. Su WW, Li J, Xu NS (2003) State and parameter estimation of microalgal photobioreactor cultures based on local irradiance measurement. J Biotechnol 105:165–178

    Article  CAS  Google Scholar 

  20. Becerra-Celis G (2009) Proposition de stratégies de commande pour la culture de microalgue dans un photobioréacteur continu. Ph.D. thesis, Ecole Centrale Paris, France

  21. Bernard O, Sallet G, Sciandra A (1998) Nonlinear observers for a class of biological systems. Application to validation of a phytoplanktonic growth model. IEEE Trans Autom Contr 43:1056–1065

    Article  Google Scholar 

  22. Rapaport A, Dochain D (2005) Interval observers for biochemical processes with uncertain kinetics and inputs. Math Biosciences 193(2):235–253

    Article  CAS  Google Scholar 

  23. Gouzé JL, Rapaport A, Hadj-Sadol MZ (2000) Interval observers for uncertain biological systems. Ecol Model 133:45–56

    Article  Google Scholar 

  24. Goffaux G, Vande Wouwer A, Bernard O (2009) Improving continuous discrete interval observers with application to microalgae-based bioprocesses. J Process Control 19(7):1182–1190

    Article  CAS  Google Scholar 

  25. Smets IY, Claes JE, November EJ, Bastin GP, Van Impe JF (2004) Optimal adaptive control of (bio)chemical reactors: past, present and future. J Process Control 14(7):795–805

    Article  CAS  Google Scholar 

  26. Tebbani S, Dumur D, Hafidi G, Vande Wouwer A (2010) Nonlinear predictive control of fed-batch cultures of Escherichia coli. Chem Eng Technol 33:1112–1124

    Article  CAS  Google Scholar 

  27. Dewasme L, Richelle A, Dehottay P, Georges P, Remy M, Bogaerts P, Vande Wouwer A (2010) Linear robust control of S. cerevisiae fed-batch cultures at different scales. Biochem Eng J 53(1):26–37

    Article  CAS  Google Scholar 

  28. Yamuna Rani K, Ramachandra Rao VS (1999) Control of fermenters-a review. Bioprocess Biosys Eng 21(1):77–88

    CAS  Google Scholar 

  29. Alford JS (2006) Bioprocess control: advances and challenges. Comput Chem Eng 30:1464–1475

    Article  CAS  Google Scholar 

  30. Bernard O (2011) Hurdles and challenges for modeling and control of microalgae for CO2 mitigation and biofuel production. J Process Control 21:1378–1389

    Article  CAS  Google Scholar 

  31. Mailleret L, Gouzé J-L, Bernard O (2005) Nonlinear control for algae growth models in the chemostat. Bioprocess Biosyst Eng 27:319–328

    Article  CAS  Google Scholar 

  32. Lee PL, Sullivan GR (1988) Generic model control (GMC)”. Comput Chem Eng 12(6):573–580

    Article  CAS  Google Scholar 

  33. Jenzsch M, Simutis R, Luebbert A (2006) Generic model control of the specific growth rate in recombinant Escherichia coli cultivations. J Biotechnol 122(4):483–493

    Article  CAS  Google Scholar 

  34. Santos LO, Dewasme L, Coutinho D, Vande Wouwer A (2012) Nonlinear model predictive control of fed-batch cultures of micro-organisms exhibiting overflow metabolism: assessment and robustness. Comput Chem Eng 39:143–151

    Article  CAS  Google Scholar 

  35. Witt W, Köhler U, List J (2007) Current limits of particle size and shape analysis with high speed image analysis. PARTEC, Germany

    Google Scholar 

  36. Nouals S (2000) Modélisation d’un photobioréacteur pour le pilotage de microalgues. PhD thesis, Ecole Centrale Paris, France

  37. Baquerisse D, Nouals S, Isambert A, Ferreira dos Santos P, Durand G (1999) Modelling of a continuous pilot photobioreactor for microalgae production. J Biotechnol 70:335–342

    Article  CAS  Google Scholar 

  38. Filali R (2012) Estimation et commande robustes de culture de microalgues pour la valorisation biologique de CO2. Ph.D. thesis, Supélec, France

  39. Pruvost J, Van Vooren G, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresource Technol 100(23):5988–5995

    Article  CAS  Google Scholar 

  40. Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, NY

    Google Scholar 

  41. Hulatt CJ, Thomas DN (2011) Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresour Technol 102:5775–5787

    Article  CAS  Google Scholar 

  42. Ryu HJ, Oh KK, Kim YS (2009) Optimization of the influential factors for the improvement of CO2 utilization efficiency and CO2 mass transfer rate. J Ind Eng Chem 15:471–475

    Article  CAS  Google Scholar 

  43. Smith HL (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. Amer Math Soc, Providence, Rhode Island

    Google Scholar 

  44. Clarke DW, Mohtadi C, Tuffs PS (1987) Generalized Predictive control. Part I: basic algorithm Automatica 23:137–148

    Google Scholar 

  45. Richalet J, Abu El Ata S, Arber C, Kuntze MB, Jacubasch A, Schill W (1987) Predictive Functional Control. Application to Fast and Accurate Robots. Proceedings 10th IFAC W.C., Munich

  46. Vassiliadis VS (1993) Computational solution of dynamic optimization problems with general differential-algebraic constraints. PhD thesis, Imperial College, University of London, London, UK

  47. Balsa-Canto E, Banga JR, Alonso AA, Vassiliadis VS (2000) Dynamic optimization of chemical and biochemical processes using restricted second-order information. Comput Chem Eng 25:539–546

    Article  Google Scholar 

  48. Bequette BW (1991) Nonlinear control of chemical processes: a review. Ind Eng Chem Res 30(7):1391–1412

    Article  CAS  Google Scholar 

  49. Lee PL (1993) Nonlinear process control: Application of Generic Model Control. Verlag, NY

    Book  Google Scholar 

  50. Huang R, Patwardhan SC, Biegler LT (2012) Robust stability of nonlinear model predictive control with extended Kalman filter and target setting. Int J Robust Nonlinear Control. doi:10.1002/rnc.2817

    Google Scholar 

  51. Roset B, Lazar M, Heemels W, Nijmeijer H (2000) A stabilizing output based nonlinear model predictive control scheme, proceedings of the 45th IEEE Conference on Decision and Control, Sans Diego, USA, 4627–4632

  52. Findeisen R, Imsland L, Allgöwer F, Foss BA (2003) Output feedback stabilization of constrained systems with nonlinear predictive control. Int J Robust Nonlinear Control 13(3–4):211–227

    Article  Google Scholar 

Download references

Acknowledgments

Part of this research was supported by the Centre National de la Recherche Scientifique (CNRS) via the program ``Estimbio, PEPS Automatique de l’Institut INSIS’’. Authors would like to thank Sette Diop for valuable discussions on topics related to estimation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sihem Tebbani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tebbani, S., Lopes, F., Filali, R. et al. Nonlinear predictive control for maximization of CO2 bio-fixation by microalgae in a photobioreactor. Bioprocess Biosyst Eng 37, 83–97 (2014). https://doi.org/10.1007/s00449-013-0928-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0928-0

Keywords

Navigation