Skip to main content
Log in

Scaling-up the production of thermostable lipolytic enzymes from Thermus aquaticus YT1

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The lipolytic enzymes synthesized by Thermus aquaticus YT1 present extremely interesting properties of thermostability (more than 70% of activity after 12 days at 80 °C and a half-life time of 1 h at 95 °C), which point out the interest of proposing efficient strategies to successfully tackle the scale-up of the production process. In this study, viable scaling-up of the production process was implemented, and relevant aspects affecting the enzyme synthesis, such as the mineral composition of the culture medium, the aeration and the agitation have been evaluated. A strategy combining the modification of the culture medium and the aeration degree was also approached by adding perfluorocarbons, compounds which improve the availability of oxygen in the culture medium. An opposite response of biomass and lipolytic activity to the aeration conditions was found between scales (about 600 U L−1 at high aeration levels in flask vs. 150 U L−1 at high aeration rates in reactor), which further demonstrates the important role of the hydrodynamic conditions on the suitable development of the biological process. In all cases, the cultures were kinetically characterized and the Luedeking and Piret model turned out to be a valuable tool to conclude that the produced lipolytic enzyme is a growth-associated metabolite, no matter the medium and the scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kiran GS, Shanmughapriya S, Jayalakshmi J, Selvin J, Gandhimathi R, Sivaramakrishnan S, Arunkumar M, Thangavelu T, Natarajaseenivasan K (2008) Optimization of extracellular psychrophilic alkaline lipase produced by marine Pseudomonas sp. (MSI057). Bioprocess Biosyst Eng 31:483–492

    Article  CAS  Google Scholar 

  2. López E, Deive FJ, Longo MA, Sanromán MA (2010) Strategies for utilisation of food processing wastes to produce lipases in solid state cultures of Rhizopus oryzae. Bioprocess Biosyst Eng 33:929–935

    Article  Google Scholar 

  3. Silva MF, Freire DMG, de Castro AM, Di Luccio M, Mazutti MA, Oliveira JV, Treichel H, Oliveira D (2011) Production of multifunctional lipases by Penicillium verrucosum and Penicillium brevicompactum under solid state fermentation of babassu cake and castor meal. Bioprocess Biosyst Eng 34:145–152

    Article  CAS  Google Scholar 

  4. Hasan H, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  5. Sánchez-Otero MG, Valerio-Alfaro G, García-Galindo HS, Oliart-Ros RM (2008) Immobilization in the presence of Triton X-100: modifications in activity and thermostability of Geobacillus thermoleovorans CCR11 lipase. J Ind Microbiol Biotechnol 35:1687–1693

    Article  Google Scholar 

  6. Littlechild JA, Guy J, Connelly S, Mallett L, Waddell S, Rye CA, Line K, Isupov M (2007) Natural methods of protein stabilization: thermostable biocatalysts. Biochem Soc Trans 35:1558–1563

    Article  CAS  Google Scholar 

  7. Berger JL, Lee BH, Lacroix C (1995) Identification of new enzyme activities of several strains of Thermus species. Appl Microbiol Biotechnol 44:81–87

    Article  CAS  Google Scholar 

  8. Domínguez A, Sanromán MA, Fuciños P, Rúa ML, Pastrana L, Longo MA (2004) Quantification of intra- and extra-cellular thermophilic lipase/esterase production by Thermus sp. Biotechnol Lett 26:705–708

    Article  Google Scholar 

  9. Fuciños P, Domínguez A, Sanromán MA, Longo MA, Rúa ML, Pastrana L (2005) Production of thermostable lipolytic activity by Thermus species. Biotechnol Prog 21:1198–1205

    Article  Google Scholar 

  10. Fuciños P, Rúa ML, Longo MA, Sanromán MA, Pastrana L (2008) Thermal spring water enhances lipolytic activity in Thermus thermophilus HB27. Process Biochem 43:1383–1390

    Article  Google Scholar 

  11. López E, Alonso B, Deive FJ, Sanromán MA, Longo MA (2011) On the hyperthermostability of lipolytic enzymes from Thermus aquaticus YT-1: exploring their application to polymer degradation. J Chem Technol Biotechnol 86:838–844

    Article  Google Scholar 

  12. Deive FJ, Carvalho E, Pastrana L, Rúa ML, Longo MA, Sanroman MA (2009) Assessment of relevant factors influencing lipolytic enzyme production by Thermus thermophilus HB27 in laboratory-scale bioreactors. Chem Eng Technol 32:606–612

    Article  CAS  Google Scholar 

  13. Domínguez A, Deive FJ, Pastrana L, Rúa ML, Longo MA, Sanromán MA (2010) Thermostable lipolytic enzyme production in continuous cultures of Thermus thermophilus HB27. Bioprocess Biosyst Eng 33:347–354

    Article  Google Scholar 

  14. Deive FJ, Sanromán MA, Longo MA (2009) Evaluation of a novel Bacillus strain from a northwestern Spain hot spring as a source of extracellular thermostable lipase. J Chem Technol Biotechnol 84:1509–1515

    Article  CAS  Google Scholar 

  15. Fuciños P, Abadín CM, Sanromán MA, Longo MA, Pastrana L, Rúa ML (2005) Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: Partial purification and preliminary biochemical characterisation. J Biotechnol 117:233–241

    Article  Google Scholar 

  16. Kumar S, Kikon K, Upadhyay U, Kanwar SS, Gupta R (2005) Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expr Purif 41:38–44

    Article  CAS  Google Scholar 

  17. Wilson L, Palomo JM, Fernández-Latorre G, Illanes A, Guisán JM, Fernández-Lafuente R (2006) Improvement of the functional properties of a thermostable lipase from Alcaligenes sp. via strong adsorption on hydrophobic supports. Enzyme Microb Technol 38:975–980

    Article  CAS  Google Scholar 

  18. Dharmsthiti S, Luchai S (1999) Production, purification and characterization of thermophilic lipase from Bacillus sp. THL027. FEMS Microbiol Lett 179:241–246

    Article  CAS  Google Scholar 

  19. Sharma R, Soni SK, Vohra RM, Gupta LK, Gupta JK (2002) Purification and characterisation of a thermostable alkaline lipase from a new thermophilic Bacillus sp. RSJ-1. Process Biochem 37:1075–1084

    Article  CAS  Google Scholar 

  20. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. J Bacteriol 98:289–297

    CAS  Google Scholar 

  21. Stramer SL, Starzyk MJ (1981) The occurrence and survival of Thermus aquaticus. Microbios 45:99–110

    Google Scholar 

  22. Munster MJ, Munster AP, Woodrow JR, Sharp RJ (1986) Isolation and preliminary taxonomic studies of Thermus strains isolated from Yellowstone National Park, USA. J Gen Microbiol 132:1677–1683

    CAS  Google Scholar 

  23. Hudson JA, Morgan HW, Daniel RM (1986) A numerical classification of some Thermus isolates. J Gen Microbiol 132:531–540

    Google Scholar 

  24. Lee GH, Bae JH, Suh MJ, Kim HR (2007) Optimal culture conditions for the production of a novel extracellular alkaline lipase from Yarrowia lipolytica NRRL Y-2178. J Appl Biol Chem 50:46–51

    CAS  Google Scholar 

  25. Domínguez A, Fuciños P, Rúa ML, Pastrana L, Longo MA, Sanromán MA (2007) Stimulation of novel thermostable extracellular lipolytic enzyme in cultures of Thermus sp. Enzyme Microb Technol 40:187–194

    Article  Google Scholar 

  26. Kademi A, Fakhreddine L, Aït-Abdelkader N, Baratti JC (1999) Effect of culture conditions on growth and esterase production by the moderate thermophile Bacillus circulans MAS2. J Ind Microbiol Biotechnol 23:188–193

    Article  CAS  Google Scholar 

  27. Deive FJ, Carvalho E, Pastrana L, Rúa ML, Longo MA, Sanromán MA (2009) Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Bioresour Technol 100:3630–3637

    Article  CAS  Google Scholar 

  28. Luedeking R, Piret EL (1959) A kinetic study of the lactic acid fermentation: batch process at controlled pH. J Biochem Microbiol Technol Eng 1:393–431

    Article  CAS  Google Scholar 

  29. Marqués AM, Estañol I, Alsina JM, Fusté C, Simon-Pujol D, Guinea J, Congregado F (1986) Production and rheological properties of the extracellular polysaccharide synthesized by Pseudomonas sp. strain EPS-5028. Appl Environ Microbiol 52:1221–1223

    Google Scholar 

  30. Chen JY, Wen CM, Chen TL (1999) Effect of oxygen transfer on lipase production by Acinetobacter radioresistens. Biotechnol Bioeng 62:311–316

    Article  CAS  Google Scholar 

  31. Chopra AK, Chander H (1983) Factors affecting lipase production in Syncephalastrum racemosum. J Appl Bacteriol 54:163–169

    Article  CAS  Google Scholar 

  32. Pereira-Meirelles FV, Rocha-Leão MHM, Sant’Anna GL (2000) Lipase location in Yarrowia lipolytica cells. Biotechnol Lett 22:71–75

    Article  CAS  Google Scholar 

  33. Montesinos JL, Lafuente J, Gordillo MA, Valero F, Solá C (1995) Structured modelling and state estimation in a fermentation process: lipase production by Candida rugosa. Biotechnol Bioeng 48:573–584

    Article  CAS  Google Scholar 

  34. Hooker AD, Hardy J, Stacey KA (1997) Is induction of the exocellular lipase of Xanthomonas maltophila NK7 by fats and detergents simply the result of continual detachment from the cell surface? World J Microbiol Biotechnol 13:677–681

    Article  CAS  Google Scholar 

  35. Elibol M, Mavituna F (1995) Effect of perfluorodecalin as an oxygen carrier on actinorhodin production by Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 43:206–210

    Article  CAS  Google Scholar 

  36. Elibol M, Mavituna F (1997) Characteristics of antibiotic production in a multiphase system. Process Biochem 32:417–522

    Article  CAS  Google Scholar 

  37. Jia S, Li P, Park YS, Okabe M (1996) Enhanced oxygen transfer in tower bioreactor on addition of liquid hydrocarbons. J Ferment Bioeng 82:191–193

    Article  CAS  Google Scholar 

  38. Junker BH, Hatton TA, Wang DIC (1990) Oxygen transfer enhancement in aqueous/perfluorocarbon fermentation systems: I. Experimental observations. Biotechnol Bioeng 35:578–585

    Article  CAS  Google Scholar 

  39. Rols JL, Condoret JS, Fonade C, Goma G (1990) Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnol Bioeng 35:427–435

    Article  CAS  Google Scholar 

  40. Amaral PFF, Rocha-Leão MHM, Marrucho IM, Coutinho JAP, Coelho MAZ (2006) Improving lipase production using a perfluorocarbon as oxygen carrier. J Chem Technol Biotechnol 81:1368–1374

    Article  CAS  Google Scholar 

  41. Castán P, Zafra O, Moreno R, de Pedro MA, Vallés C, Cava F, Caro E, Schwarz H, Berenguer J (2002) The periplasmic space in Thermus thermophilus: evidence from a regulation-defective S-layer mutant overexpressing an alkaline phosphatase. Extremophiles 6:225–232

    Article  Google Scholar 

  42. Lagarde D, Nguyen HK, Ravot G, Wahler D, Reymond JL, Hills G, Veit T, Lefevre F (2002) High-throughput screening of thermostable esterases for industrial bioconversions. Org Process Res Dev 6:441–445

    Article  CAS  Google Scholar 

  43. Ravot G, Buteux D, Favre-Bulle O, Wahler D, Veit T, Lefevre F (2004) Screening for thermostable esterases: from deep sea to industry. Eng Life Sci 4:533–538

    Article  CAS  Google Scholar 

  44. García-Ochoa F, Gómez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176

    Article  Google Scholar 

  45. MacMichael GJ (1988) Effects of oxygen and methyl viologen on Thermus aquaticus. J Bacteriol 170:4995–4998

    CAS  Google Scholar 

  46. Pham PL, Strehaiano P, Taillandier P (1998) Effect of aeration on xylanase production by Bacillus sp. I-101 8. Bioprocess Eng 18:41–43

    CAS  Google Scholar 

  47. Demirtas MU, Kolhatkar A, Kilbane JJ (2003) Effect of aeration and agitation on growth rate of Thermus thermophilus in batch mode. J Biosci Bioeng 95:113–117

    CAS  Google Scholar 

  48. Nienow AV (2009) Scale-up considerations based on studies at the bench scale in stirred bioreactors. J Chem Eng Jpn 42:789–796

    Article  CAS  Google Scholar 

  49. Mohamed MS, Mohamad R, Ramanan RN, Manan MA, Ariff AB (2009) Modeling of oxygen transfer correlations for stirred tank bioreactor agitated with atypical helical ribbon impeller. Am J Appl Sci 6:735–743

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financed by Xunta de Galicia (Project PGIDIT06PXIB314376PR). The authors wish to thank Dr. J. Berenguer for providing Thermus strains. F. J. Deive wants to thank Xunta de Galicia for funding through the Isidro Parga Pondal program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Deive.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, E., Domínguez, B., Deive, F.J. et al. Scaling-up the production of thermostable lipolytic enzymes from Thermus aquaticus YT1. Bioprocess Biosyst Eng 35, 1011–1022 (2012). https://doi.org/10.1007/s00449-012-0686-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0686-4

Keywords

Navigation