Skip to main content
Log in

Strategies for utilisation of food-processing wastes to produce lipases in solid-state cultures of Rhizopus oryzae

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the feasibility of several food-processing wastes as support substrate for lipolytic enzymes production by the fungus Rhizopus oryzae under solid-state conditions. Different experiments were conducted to select the variables that allow obtaining high levels of lipolytic enzyme activity. In particular, the use of inert and non-inert solid materials and lipidic and surfactant compounds was evaluated. It was observed that the addition of Triton X-100 together with barley bran involved lipolytic production values tenfold higher than the cultures exclusively grown on an inert support. In addition, from preliminary thermoinactivation kinetics studies, it was concluded that the strategy proposed in this investigation entails another benefit in terms of resistance of the produced enzymes against thermoinactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  CAS  Google Scholar 

  2. Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27:782–798

    Article  CAS  Google Scholar 

  3. Houden A, Kademi A, Leblanc D (2004) Lipases and their industrial applications: an overview. Appl Biochem Biotechnol 118:155–170

    Article  Google Scholar 

  4. Seitz EW (1974) Industrial application of microbial lipases: a review. J Am Oil Chem Soc 51:12–16

    Article  CAS  Google Scholar 

  5. Deive FJ, Costas M, Longo MA (2003) Production of a thermostable extracellular lipase by Kluyveromyces marxianus. Biotechnol Lett 25:1403–1406

    Article  CAS  Google Scholar 

  6. Costas M, Deive FJ, Longo MA (2004) Lipolytic activity in submerged cultures of Issatchenkia orientalis. Process Biochem 39:2109–2114

    Article  CAS  Google Scholar 

  7. Treichel H, de Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV (2009) A review on microbial lipases production. Food Bioprocess Technol. doi:10.1007/s1194700902022

  8. Longo MA, Deive FJ, Domínguez A, Sanromán MA (2007) In: Pandey A, Soccol CR, Larroche C (eds) Current developments in solid-state fermentation. Asiatech Publishers Inc, New Delhi

    Google Scholar 

  9. López E, Deive FJ, Longo MA, Sanroman MA (2008) Lipolytic enzyme production by immobilized Rhizopus oryzae. Chem Eng Technol 31:1555–1560

    Article  Google Scholar 

  10. Kumar S, Kikon K, Upadhyay A, Kanwar SS, Gupta R (2005) Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expr Purif 41:38–44

    Article  CAS  Google Scholar 

  11. Fickers P, Nicaud JM, Gaillardin C, Destain J, Thonart P (2004) Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica. J Appl Microbiol 96:742–749

    Article  CAS  Google Scholar 

  12. Kanwar L, Binod GKB, Goswani P (2002) Production of a Pseudomonas lipase in n-alkane substrate and its isolation using an improved ammonium sulfate precipitation technique. Bioresour Technol 84:207–211

    Article  CAS  Google Scholar 

  13. Ushio K, Hirata T, Yoshida K, Sakaue M, Hirose C, Suziki T, Ishizuka M (2005) Superinducers for induction of thermostable lipase production by Pseudomonas species NT-163 and other Pseudomonas-like bacteria. Biotechnol Tech 10:267–272

    Google Scholar 

  14. Amaral PFF, Rocha-Leão MHM, Marrucho IM, Coutinho JAP, Coelho MAZ (2006) Improving lipase production using a perfluorocarbon as oxygen carrier. J Chem Technol Biotechnol 81:1368–1374

    Article  CAS  Google Scholar 

  15. Lima VMG, Krieger N, Sarquis MIM, Mitchell DA, Ramos LP, Fontana JD (2003) Effect of nitrogen and carbon sources on lipase production by Penicillium aurantiogriseum. Food Technol Biotechnol 41:105–110

    CAS  Google Scholar 

  16. Hama S, Tamalampudia S, Fukumizu T, Miura K, Yamaji H, Kondo A, Fukuda H (2006) Lipase localization in Rhizopus oryzae cells immobilized within biomass support particles for use as whole-cell biocatalysts in biodiesel-fuel production. J Biosci Bioeng 101:328–333

    Article  CAS  Google Scholar 

  17. Gao L, Xu JH, Li XJ, Liu ZZ (2004) Optimization of Serratia marcescens lipase production for enantioselective hydrolysis of 3-phenylglycidic acid ester. J Ind Microbiol Biotechnol 31:525–530

    Article  CAS  Google Scholar 

  18. Gulati R, Saxena RK, Gupta R, Yadav RP, Davidson S (2000) Parametric optimisation of Aspergillus terreus lipase production and its potential in ester synthesis. Process Biochem 35:459–464

    Article  CAS  Google Scholar 

  19. Muralidhar RV, Chirumamila RR, Marchant R, Nigam PA (2001) Response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochem Eng J 9:17–23

    Article  CAS  Google Scholar 

  20. Odibo FJC, Okereke UO, Oyeka CA (1995) Influence of culture conditions on the production of lipase of Hendersonula toruloidea. Bioresour Technol 54:81–83

    Article  CAS  Google Scholar 

  21. Toskueva EP (1988) Localization and dynamics of lipase accumulation in Penicillium solitum hyphae. Antibiot Khimioter 33:499–502

    CAS  Google Scholar 

  22. Hoshino T, Ogura T, Okano K, Inoue N, Shinano H (1991) Inductive conditions of lipase by Aspergillus oryzae and its localization in a cell. Nippon Suisan Gakkai Shi 57:511–515

    CAS  Google Scholar 

  23. El Abbadi N, Druet D, Comeau LC (1995) Immunocytochemical identification and localization of lipase in cells of the mycelium of Penicillium cyclopium variety. Appl Microbiol Biotechnol 42:923–930

    Article  Google Scholar 

  24. Le Maire M, Champeil P, Møller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta Biomembr 1508:86–111

    Article  CAS  Google Scholar 

  25. Deive FJ, Carvalho E, Pastrana L, Rua ML, Longo MA, Sanromán MA (2009) Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Bioresour Technol 100:3630–3637

    Article  CAS  Google Scholar 

  26. Messias M, da Costa BZ, de Lima VMG, Dekker RFH, Rezende MI, Krieger N, Barbosa AM (2009) Screening Botryosphaeria species for lipases: production of lipase by Botryosphaeria ribis EC-01 grown on soybean oil and other carbon sources. Enzyme Microb Technol 45:426–431

    Article  CAS  Google Scholar 

  27. Henley JP, Sadana A (1985) Categorization of enzyme deactivations using a series-type mechanism. Enzyme Microb Technol 7:50–60

    Article  CAS  Google Scholar 

  28. Mateos Díaz JC, Rodríguez JA, Roussos A, Cordova J, Abousalham A, Carriere F, Baratti J (2006) Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme Microb Technol 39:1042–1050

    Article  Google Scholar 

  29. Sun SY, Xu Y (2009) Membrane-bound ‘synthetic lipase’ specifically cultured under solid-state fermentation and submerged fermentation by Rhizopus chinensis: a comparative investigation. Bioresour Technol 100:1336–1342

    Article  CAS  Google Scholar 

  30. Helistöa P, Korpela T (1998) Effect of detergents on activity of microbial lipases as measured by the nitrophenyl alkanoate esters method. Enzyme Microb Technol 23:113–117

    Article  Google Scholar 

  31. Bussamara R, Fuentefria AM, Silva de Oliveira E, Broetto L, Simcikova M, Valente P, Schrank A, Vainstein MH (2010) Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation. Bioresour Technol 101:268–275

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financed by the XUNTA (Project PGIDIT06 PXIC314191PN). Francisco Deive thanks Fundación Juana de Vega for a posdoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Sanromán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, E., Deive, F.J., Longo, M.A. et al. Strategies for utilisation of food-processing wastes to produce lipases in solid-state cultures of Rhizopus oryzae . Bioprocess Biosyst Eng 33, 929–935 (2010). https://doi.org/10.1007/s00449-010-0416-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-010-0416-8

Keywords

Navigation