Skip to main content
Log in

Enzymatic synthesis of farnesyl laurate in organic solvent: initial water activity, kinetics mechanism, optimization of continuous operation using packed bed reactor and mass transfer studies

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The influence of water activity and water content was investigated with farnesyl laurate synthesis catalyzed by Lipozyme RM IM. Lipozyme RM IM activity depended strongly on initial water activity value. The best results were achieved for a reaction medium with an initial water activity of 0.11 since it gives the best conversion value of 96.80%. The rate constants obtained in the kinetics study using Ping-Pong-Bi-Bi and Ordered-Bi-Bi mechanisms with dead-end complex inhibition of lauric acid were compared. The corresponding parameters were found to obey the Ordered-Bi-Bi mechanism with dead-end complex inhibition of lauric acid. Kinetic parameters were calculated based on this model as follows: V max = 5.80 mmol l−1 min−1 g enzyme−1, K m,A = 0.70 mmol l−1 g enzyme−1, K m,B = 115.48 mmol l−1 g enzyme−1, K i = 11.25 mmol l−1 g enzyme−1. The optimum conditions for the esterification of farnesol with lauric acid in a continuous packed bed reactor were found as the following: 18.18 cm packed bed height and 0.9 ml/min substrate flow rate. The optimum molar conversion of lauric acid to farnesyl laurate was 98.07±0.82%. The effect of mass transfer in the packed bed reactor has also been studied using two models for cases of reaction limited and mass transfer limited. A very good agreement between the mass transfer limited model and the experimental data obtained indicating that the esterification in a packed bed reactor was mass transfer limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shintre MS, Ghadge RS, Sawant SB (2002) Lipolase catalyzed synthesis of benzyl esters of fatty acids. Biochem Eng J 12:131–141

    Article  CAS  Google Scholar 

  2. Chang SW, Shaw JF, Yang CK, Shieh CJ (2007) Optimal continuous biosynthesis of hexyl laurate by a packed bed bioreactor. J Process Biochem 42:1362–1366

    Article  CAS  Google Scholar 

  3. Rahman MBA, Zaidan UH, Basri M, Hussien MZ, Rahman RNZRA, Salleh AB (2008) Enzymatic synthesis of methyl adipate ester using lipase from Candida rugosa immobilized on Mg, Zn and Ni of layered double hydroxides (LDHs). J Mol Cat B Enzym 50:33–39

    Article  Google Scholar 

  4. Ganapati DY, Shrikant BD (2009) Immobilized lipase-catalysed synthesis of cinnamyl laurate in non-aqueous media. J Mol Cat B Enzym 57:34–39

    Article  Google Scholar 

  5. Horchani H, Salem NB, Zarai Z, Sayari A, Gargouri Y, Chaabouni M (2010) Enzymatic synthesis of eugenol benzoate by immobilized Staphylococcus aureus lipase: optimization using response surface methodology and determination of antioxidant activity. Bioresource Technol 101:2809–2817

    Article  CAS  Google Scholar 

  6. Carrea G, Ottolina G, Riva S (1995) Role of solvents in the control of enzyme selectivity in organic media. Trends Biotechnol 13:63–69

    Article  CAS  Google Scholar 

  7. Halling PJ (1992) Salt hydrates for water activity control in biocatalysts in organic media. Biotechnol Tech 6:271–276

    Article  CAS  Google Scholar 

  8. Duan ZQ, Du W, Liu DH (2010) The pronounced effect of water activity on the positional selectivity of Novozym 435 during 1, 3-diolein synthesis by esterification. Catal Commun 11:356–358

    Article  CAS  Google Scholar 

  9. Chamouleau F, Coulon D, Girardin M, Ghoul M (2001) Influence of water activity and water content on sugar esters lipase-catalyzed synthesis in organic media. J Mol Cat B Enzym 11:949–954

    Article  CAS  Google Scholar 

  10. Panke S, Wubbolts MG (2002) Enzyme technology and bioprocess engineering. Curr Opin Biotechnol 13:111–116

    Article  CAS  Google Scholar 

  11. Adamczack M, Bornscheuer UT (2009) Improving ascorbyl oleate synthesis catalyzed by Candida antartica lipase B in ionic liquids and water activity control by salts hydrates. J Process Biochem 44:257–261

    Article  Google Scholar 

  12. Pires-Cabral P, da Fonseca MMR, Ferreira-Dias S (2009) Synthesis of ethyl butyrate in organic media catalyzed by Candida rugosa lipase immobilized in polyurethane foams: a kinetic study. Biochem Eng J 43:327–332

    Article  CAS  Google Scholar 

  13. Daneshfar A, Ghaziaskar HS, Shiri L, Manafi MH, Nikorazm M, Abassi S (2007) Synthesis of 2-ethylhexyl-2-ethylhexanoate catalyzed by immobilized lipase in n-hexane: a kinetic study. Biochem Eng J 37:279–284

    Article  CAS  Google Scholar 

  14. Swarts JW, Vossenberg P, Meerman MH, Janssen AEM, Boom RM (2008) Comparison of two-phase lipase-catalysed esterification on micro and bench-scale. Biotechnol Bioeng 99:855–861

    Article  CAS  Google Scholar 

  15. Elfanso E, Garland M, Loh KC, Talukder MMR, Widjaja E (2009) In situ monitoring of turbid immobilized lipase-catalyzed esterification of oleic acid using fiber-optic Raman spectroscopy. Catal Today (in Press, Corrected Proof)

  16. Znidarsic-Plazl P, Plazl I (2009) Modelling and experimental studies on lipase-catalyzed isoamyl acetate synthesis in a microreactor. Process Biochem 44:1115–1121

    Article  CAS  Google Scholar 

  17. Ganapati DY, Devi KM (2002) Enzymatic synthesis of perlauric acid using Novozym 435. Biochem Eng J 10:93–101

    Article  Google Scholar 

  18. Ganapati DY, Lathi PS (2004) Synthesis of citronellyl laurate in organic media catalyzed by immobilized lipases: kinetic studies. J Mol Cat B Enzym 27:113–119

    Article  Google Scholar 

  19. Serri NA, Kamaruddin AH, Long WS (2006) Studies of reaction parameters on synthesis of citronellyl laurate ester via immobilized candida rugosa lipase in organic media. Bioprocess Biosyst Eng 29:253–260

    Article  CAS  Google Scholar 

  20. Claon PA, Akoh CC (1994) Effect of reaction parameters on SP435 lipase-catalyzed synthesis of citronellyl acetate in organic solvent. Enzym Microb Technol 15:835–838

    Article  Google Scholar 

  21. Stamatis H, Christakopoulos P, Kekos D, Marcis BJ, Kolisis FN (1998) Studies on the synthesis of short-chain geranyl esters catalyzed by Fusarium oxysporum esterase in organic solvents. J Mol Cat B Enzym 4:229–236

    Article  CAS  Google Scholar 

  22. Chattarjee T, Bhattacharyya DK (1998) Synthesis of monoterpene esters by alcoholysis reaction with Mucor miehei lipase in a solvent-free medium. J Am Oil Chem Soc 75:651–655

    Article  Google Scholar 

  23. Laudani CG, Habulin M, Knez Z, Porta GD, Reverchon E (2007) Immobilized lipase-mediated long-chain fatty acid esterification in dense carbon dioxide: bench scale packed bed reactor study. J Supercrit Fluids 41:74–81

    Article  CAS  Google Scholar 

  24. Khaled N, Montet D, Pina M, Graille J (1991) Fructose oleate synthesis in a fixed catalyst bed reactor. Biotechnol Lett 13:167–172

    Article  CAS  Google Scholar 

  25. Xu JH, Kato Y, Asano Y (2001) Efficient preparation of (R)-α-monobenzoyl glycerol by lipase catalysed asymmetric esterification: optimization and operation in a packed bed reactor. Biotechnol Bioeng 73:493–499

    Article  CAS  Google Scholar 

  26. Petzelbauer I, Kuhna B, Splechtna B, Kulbe KD, Nidetzky B (2002) Development of an ultrahigh-temperature process for the enzymeatic hydrolysis of lactose IV: immobilization of two thermostable β-glycosidases and optimization of packed bed reactor for lactose conversion. Biotechnol Bioeng 77:619–631

    Article  CAS  Google Scholar 

  27. Xi WW, Xi JH (2005) Preparation of enantiopure (S)-ketoprofen by immobilized Candida rugosa lipase in packed bed reactor. Proc Biochem 40:2161–2166

    Article  CAS  Google Scholar 

  28. Watanabe Y, Shimada Y, Sugihara A, Tominaga Y (2001) Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed bed bioreactor. J Am Oil Chem Soc 78:703–707

    Article  CAS  Google Scholar 

  29. Nie K, Xie F, Wang F, Tan T (2006) Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Cat B Enzym 43:142–147

    Article  CAS  Google Scholar 

  30. Royon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Biores Technol 98:648–653

    Article  CAS  Google Scholar 

  31. Roca E, Minander N, Hahn-Hagerdal B (1996) Xylitol production by immobilized recombinant Saccharomyces cerevisiae in a continuous packed bed bioreactor. Biotechnol Bioeng 51:317–326

    Article  CAS  Google Scholar 

  32. Mu H, Xu X, Hoy CE (1998) Production of specific-structured triacylglycerols by lipase catalyzed interesterification in a laboratory scale continuous reactor. J Am Oil Chem Soc 75:1187–1193

    CAS  Google Scholar 

  33. Xu X, Balchen S, Hoy CE, Adler-Nissen J (1998) Production of specific-structured lipids by enzymatic interesterification in a pilot continuous enzyme reactor. J Am Oil Chem Soc 75:1573–1579

    Article  CAS  Google Scholar 

  34. Shimada Y, Suenaga M, Sugihara A, Nakai S, Tominaga Y (1996) Continuous production of structured lipid containing γ-linolenic and caprylic acids by immobilized Rhizopus delemar lipase. J Am Oil Chem Soc 76:189–193

    Article  Google Scholar 

  35. Halim SFA, Kamaruddin AH, Fernando WJN (2009) Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: optimization using response surface methodology (RSM) and mass transfer studies. Biores Technol 100:710–716

    Article  CAS  Google Scholar 

  36. Montgomery DC (2001) Design and analysis of experiments, 5th edn. John Wiley & Sons, New York

    Google Scholar 

  37. Aziz HA, Kamaruddin AH, Bakar MZA (2007) Process optimization studies on solvent extraction with naphthalene-2-boronic acid ion-pairing with trioctylmethylammonium chloride in sugar purification using design of experiments. Sep Purif Technol 60:190–197

    Article  Google Scholar 

  38. Murty VRC, Bhat J, Muniswaran PKA (2004) Mass transfer effects in immobilized lipase packed bed reactor during the hydrolysis of rice bran oil. Chem Biochem 18:177–182

    CAS  Google Scholar 

  39. Murty VRC, Bhat J, Muniswaran PKA (2005) External mass transfer effects during the hydrolysis of rice bran oil in immobilized lipase packed bed reactor. Chem Biochem 19:57–61

    CAS  Google Scholar 

  40. Caro Y, Pina M, Turon F, Guilbert S, Mougeot E, Fetsch DV, Attwool P, Graille J (2002) Plant lipase: biocatalyst aqueous environment in relation to optimal catalytic activity in lipase-catalyzed synthesis reactions. Biotechnol Bioeng 77:693–703

    Article  CAS  Google Scholar 

  41. Giraldo LJL, Laguerre M, Lecomte J, Figueroa-Espinoza MC, Barouh N, Barea B, Villeneuve (2007) Lipase-catalyzed synthesis of chlorogenate fatty esters in solvent-free medium. Enzym Microb Technol 41:721–726

    Article  Google Scholar 

  42. Rosell CM, Vaidya AM (1995) Twin-core packed bed reactors for organic phase enzymatic esterification with water activity control. Appl Microbiol Biotechnol 44:283–286

    Article  CAS  Google Scholar 

  43. Humeau C, Girardin M, Rovel B, Miclo A (1998) Effect of the thermodynamic water activity and the reaction medium hydrophobicity on the enzymatic synthesis of ascorbyl palmitate. J Biotechnol 63:1–8

    Article  CAS  Google Scholar 

  44. Lue BM, Karboune S, Yeboah FK, Kermasha S (2005) Lipase-catalyzed esterification of cinnamic acid and oleyl alcohol in organic solvent media. J Chem Technol Biotechnol 80:462–468

    Article  CAS  Google Scholar 

  45. Kang IJ, Pfromm PH, Rezac ME (2005) Real time measurement and control of thermodynamic water activities for enzymatic catalysis in hexane. J Biotechnol 119:147–154

    Article  CAS  Google Scholar 

  46. Awang R, Basri M, Ahmad S, Salleh AB (2000) Enzymatic esterification of dihydroxystearic acid. J Am Oil Chem Soc 77:609–612

    Article  CAS  Google Scholar 

  47. Piszkiewicz D (1977) Kinetics of chemical and enzyme-catalyzed reactions. Oxford University Press, New York

    Google Scholar 

  48. Segel IH (1975) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme system. John Wiley & Sons Inc., New York

    Google Scholar 

  49. Faber K, Riva S (1992) Enzyme-catalyzed irreversible acyl transfer. Synthesis 10:895–910

    Article  Google Scholar 

  50. Ganapati DY, Trivedi AH (2003) Kinetic modeling of immobilized lipase-catalyzed transesterification of n-octanol with vinyl acetate in non-aqueous media. Enzym Microb Technol 32:783–789

    Google Scholar 

  51. Kula MR (2002) In: Druz K, Waldmann H (eds) Introduction: in enzyme catalysis in organic synthesis. Wiley-VCH, Germany

    Google Scholar 

  52. Ye P, Xu ZK, Che AF, Wu J, Seta P (2005) Chitosan-tethered poly(acylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization. Biomaterials 26:6394–6403

    Article  CAS  Google Scholar 

  53. Shuler ML, Kargi F (1992) Basic concepts: bioprocess engineering. Prentice Hall, New Jersey

    Google Scholar 

  54. Liese A (2000) Industrial Biotransformations. Wiley-VCH, Germany

    Book  Google Scholar 

  55. Lee KT, Mohtar AM, Zainuddin NF, Bhatia S (2005) Optimum condition for preparation of flue gas desulfurization absorbent rice husk ash. Fuel 84:143–151

    Article  CAS  Google Scholar 

  56. Yuan X, Liu J, Zheng G, Shi J, Tong J, Huang G (2008) Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renew Energy 33:1678–1684

    Article  CAS  Google Scholar 

  57. Beg Q, Sahai V, Gupta R (2003) Statistical media optimization and alkaline protease production from Bacillus mojavensis in bioreactor. Proc Biochem 39:203–209

    Article  CAS  Google Scholar 

  58. Ciftci ON, Fadlloglu S, Gogus F (2008) Conversion of olive pomace oil to cocoa butter-like fat in a packed bed enzyme reactor. Biores Technol 100:324–329

    Article  Google Scholar 

  59. Tepe O, Dursun AY (2008) Combined effects of external mass transfer and biodegradation rates on removal of phenol by immobilized Ralstonia eutropha in a packed bed reactor. J Hazard Mat 151:9–16

    Article  CAS  Google Scholar 

  60. Watanabe T, Sugiura M, Sato M, Yamada N, Nakanishi K (2005) Diacylglycerol production in a packed bed bioreactor. Proc Biochem 40:637–643

    Article  CAS  Google Scholar 

  61. Xia YM, Fang Y, Xu ZG, Hu HY, Shen YA, Brown J Jr (2004) A novel process for enzymatic synthesis of N-lauroyl-β-amino propionitrile using a packed bed reactor coupled with on-line separation. J Mol Cat B Enzym 31:111–115

    Article  CAS  Google Scholar 

  62. Formuso LB, Akoh CC (2002) Lipase-catalyzed acidolysis of olive oil and caprylic acid in a bench-scale packed bed bioreactor. Food Res Intern 35:15–21

    Article  Google Scholar 

  63. Gandhi NN, Sawant SB, Joshi JB (1995) Study on the Lipozyme catalyzed synthesis of butyl laurate. Biotechnol Bioeng 46:1–12

    Article  CAS  Google Scholar 

  64. Ramero MD, Calvo L, Alba C, Daneshfar A, Ghaziaskar HS (2005) Enzymatic synthesis of isoamyl acetate with immobilized Candida antartica lipase in n-hexane. Enzym Microb Technol 37:42–48

    Article  Google Scholar 

  65. Chaibakhsh N, Rahman MBA, Aziz SA, Basri M, Salleh AB, Rahman RNZRA (2009) Optimized lipase-catalyzed synthesis of adipate ester in a solvent-free system. J Indust Microb Biotechnol 36:1149–1155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Universiti Sains Malaysia for providing the facilities, Science Fund for providing the long-term research grant (6013201), Postgraduate Research Grant Scheme (USM-RU-PRGS) (1001/PJKIMIA/8032028) and the National Science Fellowship (NSF) fund which has resulted in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Kamaruddin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, N.K., Kamaruddin, A.H. & Uzir, M.H. Enzymatic synthesis of farnesyl laurate in organic solvent: initial water activity, kinetics mechanism, optimization of continuous operation using packed bed reactor and mass transfer studies. Bioprocess Biosyst Eng 34, 687–699 (2011). https://doi.org/10.1007/s00449-011-0518-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0518-y

Keywords

Navigation