Skip to main content
Log in

Modelling and simulation of steady-state phenol degradation in a pulsed plate bioreactor with immobilised cells of Nocardia hydrocarbonoxydans

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A novel bioreactor called pulsed plate bioreactor (PPBR) with cell immobilised glass particles in the interplate spaces was used for continuous aerobic biodegradation of phenol present in wastewater. A mathematical model consisting of mass balance equations and accounting for simultaneous external film mass transfer, internal diffusion and reaction is presented to describe the steady-state degradation of phenol by Nocardia hydrocarbonoxydans (Nch.) in this bioreactor. The growth of Nch. on phenol was found to follow Haldane substrate inhibition model. The biokinetic parameters at a temperature of 30 ± 1 °C and pH at 7.0 ± 0.1 are μ m = 0.5397 h−1, K S = 6.445 mg/L and K I = 855.7 mg/L. The mathematical model was able to predict the reactor performance, with a maximum error of 2% between the predicted and experimental percentage degradations of phenol. The biofilm internal diffusion rate was found to be the slowest step in biodegradation of phenol in a PPBR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a avg :

Average surface area of benzoic acid particle (m2)

a n :

S* at x = 0 for nth iteration

a n+1 :

S* at x = 0 for (n + 1)th iteration

A :

Amplitude of pulsation (cm)

A p :

Total surface area of bioparticles in the reactor (m2)

Bi :

Biot number

C :

Concentration of benzoic acid in the bulk liquid at the end of the run (kg m−3)

C*:

Solubility of benzoic acid in water (kg m−3)

d p :

Diameter of biomass free particle (m)

Da :

Damkohler number

D eff :

Effective diffusivity of phenol in the biofilm (m2 s−1)

D w :

Diffusivity of phenol in water (m2 s−1)

f :

Frequency of pulsation (s−1)

k s :

Liquid–solid mass transfer coefficient for phenol (m s−1)

K I :

Inhibition constant for phenol (kg m−3)

K S :

Monod constant for phenol (kg m−3)

KI*:

Dimensionless inhibition constant for phenol

KS*:

Dimensionless Monod constant for phenol

n :

nth iteration

N p :

Number of bioparticles in the reactor

Q :

Flow rate of synthetic waste water (m3 s−1)

r :

Radial coordinate in biofilm (m)

r p :

Radius of biomass free particle (m)

R (S):

Substrate consumption rate at any phenol concentration S (kg s−1)

R (Sb):

Substrate consumption rate at bulk phenol concentration (kg s−1)

R (SS):

Substrate consumption rate at surface phenol concentration (kg s−1)

S :

Phenol concentration in biofilm (kg m−3)

S b :

Phenol concentration in the bulk liquid (kg m−3)

S I :

Phenol concentration in influent synthetic wastewater (kg m−3)

S max :

Phenol concentration above which the growth is inhibited (kg m−3)

S s :

Phenol concentration at the surface of the biofilm (kg m−3)

S*:

Dimensionless phenol concentration within the biofilm

S*x=1:

Dimensionless phenol concentration at x = 1

W :

Total biomass in the reactor (kg)

x :

Dimensionless distance in the biofilm

Y x/s :

Observed yield coefficient (kg kg−1)

y*:

Dimensionless concentration gradient in the biofilm

y*x=1:

Dimensionless concentration gradient at x = 1

Δm :

Change in the mass of benzoic acid particle before and after the run (kg)

Δt :

Retention time of benzoic acid particle in the reactor (s)

δ :

Biofilm thickness (m)

η external :

External effectiveness factor

η internal :

Internal effectiveness factor

η overall :

Overall effectiveness factor

μ :

Specific growth rate of organism (s−1)

μ m :

Maximum specific growth rate of organism (s−1)

ρ b :

Biofilm density (kg m−3)

φ s :

Thiele modulus for phenol

References

  1. Ehrhardt HM, Rehm HJ (1985) Phenol degradation by microorganisms adsorbed on activated carbon. Appl Microbiol Biotechnol 21:32–36

    Article  CAS  Google Scholar 

  2. Prieto M, Hidalgo A, Serra JL, Llama MJ (2002) Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite in a packed-bed reactor. J Biotechnol 97:1–11

    Article  CAS  Google Scholar 

  3. Chen KC, Lin YH, Chen WH, Liu YC (2002) Degradation of phenol by PAA-immobilized Candida tropicalis. Enzyme Microb Technol 31:490–497

    Article  CAS  Google Scholar 

  4. Chung TS, Tseng HY, Juang RS (2003) Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochem 38:1497–1507

    Article  CAS  Google Scholar 

  5. Mordocco A, Kuek C, Jenkins R (1999) Continuous degradation of phenol at low concentration using immobilized Pseudomonas putida. Enzyme Microb Technol 25:530–536

    Article  CAS  Google Scholar 

  6. Tziotzios G, Teliou M, Kaltsouni V, Lyberatos G, Vayenas DV (2005) Biological phenol removal using suspended growth and packed bed reactors. Biochem Eng J 26:65–71

    Article  CAS  Google Scholar 

  7. Pawlosky U, Howell JA (1973) Mixed culture biooxidation of phenol. 1. Determination of kinetic parameters. Biotechnol Bioeng 15:889–896

    Article  Google Scholar 

  8. Dikshitulu S, Baltzis BC, Lewandowski GA, Pavlou S (1993) Competition between two microbial populations in a sequencing fed-batch reactor: theory, experimental verification, and implications for waste treatment applications. Biotechnol Bioeng 42:643–659

    Article  CAS  Google Scholar 

  9. Dursun AY, Tepe O (2005) Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha. J Hazard Mater B126:105–111

    Article  Google Scholar 

  10. Shetty KV, Kalifathulla I, Srinikethan G (2007) Performance of pulsed plate bioreactor for biodegradation of phenol. J Hazard Mater 140:346–352

    Article  CAS  Google Scholar 

  11. Tang WT, Fan LS (1987) Steady state phenol degradation in a draft-tube, gas–liquid–solid fluidized bed bioreactor. AIChE J 33:239–249

    Article  CAS  Google Scholar 

  12. Livingston AG, Chase HA (1989) Modeling phenol degradation in a fluidized bed bioreactor. AIChE J 35:1980–1992

    Article  CAS  Google Scholar 

  13. Vinod AV, Reddy GV (2005) Simulation of biodegradation process of phenolic waste water at higher concentrations in a fluidized-bed bioreactor. Biochem Eng J 24:1–10

    Article  Google Scholar 

  14. Vidyavathi N (1998) Bioremediation of industrial and domestic effluents by microorganisms. PhD thesis, Department of Chemical Engineering, KREC Surathkal, Mangalore University, India

  15. Ramirez WF (1989) Computational methods for process simulation. Butterworth Publishers, Stoneham, pp 295–297

  16. AWWA, APHA, WEF (1975) Standard methods for the examination of water and wastewater, 14th edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, p 580

  17. Shuler ML, Kargi F (2002) Bioprocess engineering-basic concepts, 2nd edn. Prentice Hall of India, New Delhi, pp 73, 165

  18. Shetty KV, Ramanjaneyulu R, Srinikethan G (2007) Biological phenol removal using immobilized cells in a pulsed plate bioreactor: effect of dilution rate and influent phenol concentration. J Hazard Mater 149:452–459

    Article  CAS  Google Scholar 

  19. Prakash A, Briens CL, Bergougnou MA (1987) Mass transfer between solid particles and liquid in a three phase fluidized bed. Can J Chem Eng 65:228–236

    Article  CAS  Google Scholar 

  20. Arters DC, Fan LS (1986) Solid–liquid mass transfer in a gas–liquid–solid fluidized bed. Chem Eng Sci 41:107–115

    Article  CAS  Google Scholar 

  21. Guedes de Carvalho JRF, Delgado JMPQ, Alves MA (2004) Mass transfer between flowing fluid and sphere buried in packed bed of inerts. AIChE J 50:65–74

    Article  CAS  Google Scholar 

  22. Monteiro AMG, Boaventura RAR, Rodrigues AE (2000) Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor. Biochem Eng J 6:45–49

    Article  CAS  Google Scholar 

  23. Wang SJ, Loh KC (1999) Modeling the role of metabolic intermediates in kinetics of phenol biodegradation. Enzyme Microb Technol 25:177–184

    Article  Google Scholar 

  24. Yang RD, Humphrey AE (1975) Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures. Biotechnol Bioeng 17:1211–1235

    Article  CAS  Google Scholar 

  25. Abuhamed T, Bayraktar E, Mehmetoglu T, Mehemetoglu U (2004) Kinetics model for growth of Pseudomonas putida F1 during benzene, toluene and phenol biodegradation. Process Biochem 39:983–988

    Article  CAS  Google Scholar 

  26. Kumaran P, Paruchuri YL (1997) Kinetics of phenol biotransformation. Water Res 31:11–22

    Article  CAS  Google Scholar 

  27. Hao OJ, Kim MH, Seagren EA, Kim (2002) Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere 46:797–807

    Article  CAS  Google Scholar 

  28. Alexievaa Z, Gerginova M, Zlateva P, Peneva N (2004) Comparison of growth kinetics and phenol metabolizing enzymes of Trichosporon cutaneum R57 and mutants with modified degradation abilities. Enzyme Microb Technol 34:242–247

    Article  CAS  Google Scholar 

  29. Yan J, Jianping W, Hongmei L, Suliang Y, Zongding H (2005) The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis. Biochem Eng J 24:243–247

    Article  Google Scholar 

  30. Jones GL, Jansen F, McCay AJ (1973) Substrate inhibition of the growth of bacterium NCIB8250 by phenol. J Gen Microbiol 74:139–148

    CAS  Google Scholar 

  31. Pawlowsky V, Howell JA (1973) Mixed culture biooxidation of phenol. I. Determination of kinetic parameters. Biotechnol Bioeng 15:889–896

    Article  CAS  Google Scholar 

  32. Hill GA, Robinson CW (1975) Substrate inhibition kinetics: Phenol degradation by Pseudomonas putida. Biotechnol Bioeng 17:1599–1615

    Article  CAS  Google Scholar 

  33. Sheeja RY, Murugesan T (2002) Mass transfer studies on the biodegradation of phenols in up-flow packed bed reactors. J Hazard Mater B89:287–301

    Article  Google Scholar 

  34. Hsien TY, Lin YH (2005) Biodegradation of phenolic wastewater in a fixed biofilm reactor. Biochem Eng J 27:95–103

    Article  CAS  Google Scholar 

  35. Fan LS, Ramos RL, Wisecarver K, Zehner B (1990) Diffusion of phenol through a biofilm grown on activated carbon particles in a draft tube three phase fluidized bed bioreactor. Biotechnol Bioeng 35:279–286

    Article  CAS  Google Scholar 

  36. Tang WT, Wisecarver K, Fan LS (1987) Dynamics of a draft tube gas–liquid–solid fluidized bed bioreactor for phenol degradation. Chem Eng Sci 42:2123–2134

    Article  CAS  Google Scholar 

  37. Spigno G, Zilli M, Nicolella C (2004) Mathematical modeling and simulation of phenol degradation in biofilters. Biochem Eng J 19:267–275

    Article  CAS  Google Scholar 

  38. Treybal RE (1980) Mass Transfer Operations. 3rd ed, McGraw-Hill International Editions–Chemical Engineering Series, Singapore, p 35

  39. Open Universiteit1 (1992) The Netherlands and Thames Polytechnic, UK, Operational Modes of Bioreactors, BIOTOL Series, Butterworth Heinemann Ltd. Oxford

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vidya Shetty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shetty, K.V., Verma, D.K. & Srinikethan, G. Modelling and simulation of steady-state phenol degradation in a pulsed plate bioreactor with immobilised cells of Nocardia hydrocarbonoxydans . Bioprocess Biosyst Eng 34, 45–56 (2011). https://doi.org/10.1007/s00449-010-0445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-010-0445-3

Keywords

Navigation