Skip to main content
Log in

Studies on substrate utilisation in l-valine-producing Corynebacterium glutamicum strains deficient in pyruvate dehydrogenase complex

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The pyruvate dehydrogenase complex was deleted to increase precursor availability in Corynebacterium glutamicum strains overproducing l-valine. The resulting auxotrophy is treated by adding acetate in addition glucose for growth, resulting in the puzzling fact of gluconeogenic growth with strongly reduced glucose uptake in the presence of acetate in the medium. This result was proven by intracellular metabolite analysis and labelling experiments. To increase productivity, the SugR protein involved in negative regulation of the phosphotransferase system, was inactivated, resulting in enhanced consumption of glucose. However, the surplus in substrate uptake was not converted to l-valine; instead, the formation of up to 289 μM xylulose was observed for the first time in C. glutamicum. As an alternative to the genetic engineering solution, a straightforward process engineering approach is proposed. Acetate limitation resulted in a more efficient use of acetate as cosubstrate, shown by an increased biomass yield Y X/Ac and improved l-valine formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sugisaki Z (1959) Studies on l-valine fermentation. Part 1- Production of l-valine by Aerobacter Bacteria. J Gen Appl Microbiol 5:138–149

    Article  CAS  Google Scholar 

  2. Eggeling L, Pfefferle W, Sahm H (2001) Amino acids. In: Colin R, Bjoern K (eds) Basic biotechnology. Cambridge University Press, Cambridge, New York, pp 281–303

  3. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  CAS  Google Scholar 

  4. Demain AL, Adrio JL (2008) Contributions of microorganisms to industrial biology. Mol Biotechnol 38:41–55

    Article  CAS  Google Scholar 

  5. Bartek T, Makus P, Klein B, Lang S, Oldiges M (2008) Influence of l-isoleucine and pantothenate auxotrophy for l-valine formation in Corynebacterium glutamicum revisited by metabolome analyses. Bioprocess Biosyst Eng 31:217–225

    Article  CAS  Google Scholar 

  6. Radmacher E, Vaitsikova A, Burger U, Krumbach K, Sahm H, Eggeling L (2002) Linking central metabolism with increased pathway flux: l-valine accumulation by Corynebacterium glutamicum. Appl Environ Microbiol 68:2246–2250

    Article  CAS  Google Scholar 

  7. Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ (2007) l-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73:2079–2084

    Article  CAS  Google Scholar 

  8. Leyval D, Uy D, Delaunay S, Goergen JL, Engasser JM (2003) Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol 104:241–252

    Article  CAS  Google Scholar 

  9. Bartek T, Blombach B, Zönnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M. Importance of NADPH supply for improved l-valine formation in Corynebacterium glutamicum. Biotechnol Prog. doi:10.1002/btpr.345

  10. Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79:471–479

    Article  CAS  Google Scholar 

  11. Wendisch VF, Bott M, Kalinowski J, Oldiges M, Wiechert W (2006) Emerging Corynebacterium glutamicum systems biology. J Biotechnol 124:74–92

    Article  CAS  Google Scholar 

  12. Mori M, Shiio I (1987) Phosphoenolypyruvate—sugar phosphotransferase systems and sugar metabolism in Brevibacterium flavum. Agric Biol Chem 51:2671–2678

    CAS  Google Scholar 

  13. Yokota A, Lindley ND (2005) Central metabolism: sugar uptake and conversion. In: Bott M, Eggeling L (eds) Handbook of Corynebacterium glutamicum. Taylor and Francis, Boca Raton, pp 215–240

    Google Scholar 

  14. Engels V, Wendisch VF (2007) The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J Bacteriol 189:2955–2966

    Article  CAS  Google Scholar 

  15. Gaigalat L, Schlüter J-P, Hartmann M, Mormann S, Tauch A, Pühler A, Kalinowski J (2007) The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Mol Biol 8:104

    Article  CAS  Google Scholar 

  16. Tanaka Y, Teramoto H, Inui M, Yukawa H (2008) Regulation of expression of general components of the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum. Appl Microbiol Biotechnol 78:309–318

    Article  CAS  Google Scholar 

  17. Oldiges M, Lütz S, Pflug S, Schroer K, Stein N, Wiendahl C (2007) Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol 76:495–511

    Article  CAS  Google Scholar 

  18. Luo B, Groenke K, Takors R, Wandrey C, Oldiges M (2007) Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 1147:153–164

    Article  CAS  Google Scholar 

  19. Villas-Boas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24:613–646

    Article  CAS  Google Scholar 

  20. Schreiner ME, Eikmanns BJ (2005) Pyruvate : quinone oxidoreductase from Corynebacterium glutamicum: purification and biochemical characterization. J Bacteriol 187:862–871

    Article  CAS  Google Scholar 

  21. Blombach B, Arndt A, Auchter M, Eikmanns BJ (2009) l-Valine production during growth of pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in the presence of ethanol or by inactivation of the transcriptional regulator SugR. Appl Environ Microbiol 75:1197–1200

    Article  CAS  Google Scholar 

  22. Brik-Ternbach M, Bollman C, Wandrey C, Takors R (2005) Application of model discriminating experimental design for modeling and development of a fermentative fed-batch l-valine production process. Biotechnol Bioeng 91:356–368

    Article  CAS  Google Scholar 

  23. Link T, Backstrom M, Graham R, Essers R, Zorner K, Gatgens J, Burchell J, Taylor-Papadimitriou J, Hansson GC, Noll T (2004) Bioprocess development for the production of a recombinant MUC1 fusion protein expressed by CHO-K1 cells in protein-free medium. J Biotechnol 110:51–62

    Article  CAS  Google Scholar 

  24. Zelic B, Gostovic S, Vuorilehto K, Vasic-Racki B, Takors R (2004) Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnol Bioeng 85:638–646

    Article  CAS  Google Scholar 

  25. de Koning W, van Dam K (1992) A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal Biochem 204:118–123

    Article  Google Scholar 

  26. Thiele B, Füllner K, Stein N, Oldiges M, Kuhn AJ, Hofmann D (2008) Analysis of amino acids without derivatization in barley extracts by LC–MS–MS. Anal Bioanal Chem. doi:10.1007/s00216-008-2167-9

  27. Rönsch H, Krämer R, Morbach S (2003) Impact of osmotic stress on volume regulation, cytoplasmic solute composition and lysine production in Corynebacterium glutamicum MH20–22B. J Biotechnol 104:87–97

    Article  CAS  Google Scholar 

  28. Sambrook J, Russel DW (2001) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  29. Shimizu K (2004) Metabolic flux analysis based on C-13-labeling experiments and integration of the information with gene and protein expression patterns. In: Recent Progress of biochemical and biomedical engineering in Japan Ii. Springer, Berlin, pp 1–49

  30. Strelkov S, von Elstermann M, Schomburg D (2004) Comprehensive analysis of metabolites in Corynebacterium glutamicum by gas chromatography/mass spectrometry. Biol Chem 385:853–861

    Article  CAS  Google Scholar 

  31. Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI–TOF–MS metabolite profiles. Phytochemistry 62:887–900

    Article  CAS  Google Scholar 

  32. Rogatsky E, Jayatillake H, Goswami G, Tomuta V, Stein D (2005) Sensitive LC MS quantitative analysis of carbohydrates by Cs+ attachment. J Am Soc Mass Spectrom 16:1805–1811

    Article  CAS  Google Scholar 

  33. Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ (2003) Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104:99–122

    Article  CAS  Google Scholar 

  34. Wendisch VF, De Graaf AA, Sahm H, Eikmanns BJ (2000) Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol 182:3088–3096

    Article  CAS  Google Scholar 

  35. Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ (2007) Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol 76:615–623

    Article  CAS  Google Scholar 

  36. Gourdon P, Raherimandimby M, Dominguez H, Cocaign-Bousquet M, Lindley ND (2003) Osmotic stress, glucose transport capacity and consequences for glutamate overproduction in Corynebacterium glutamicum. J Biotechnol 104:77–85

    Article  CAS  Google Scholar 

  37. Dover LG, Cerdeno-Tarraga AM, Pallen MJ, Parkhill J, Besra GS (2004) Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae. FEMS Microbiol Rev 28:225–250

    Article  CAS  Google Scholar 

  38. Wolf A, Krämer R, Morbach S (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134

    Article  CAS  Google Scholar 

  39. Jolkver E, Emer D, Ballan S, Krämer R, Eikmanns BJ, Marin K (2009) Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J Bacteriol 191:940–948

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fachagentur Nachwachsende Rohstoffe of the BMVEL—Federal Ministry of Food, Agriculture and Consumer Protection—(grant 04NR003/22000304) and by Evonik Degussa GmbH. The authors wish to thank Verena Engels from IBT 1 of Forschungszentrum Jülich GmbH as well as Robert Gerstmeir and Andreas Karau from Evonik Degussa GmbH for fruitful cooperation and the valuable discussion of results, and Pia Makus for her assistance in performing the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Oldiges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartek, T., Rudolf, C., Kerßen, U. et al. Studies on substrate utilisation in l-valine-producing Corynebacterium glutamicum strains deficient in pyruvate dehydrogenase complex. Bioprocess Biosyst Eng 33, 873–883 (2010). https://doi.org/10.1007/s00449-010-0410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-010-0410-1

Keywords

Navigation