Skip to main content
Log in

Oxygen transfer to slurries treated in a rotating drum operated at atmospheric pressure

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The objective of this work was to determine (1) the effect of rotational speed (N) and lifters on the oxygen transfer coefficient (k L) of a mineral solution and (2) the effect of solids concentration of a slurry soil-mineral solution on k L, at a fixed value N (0.25 s−1); in both cases the treatment was carried out in an aerated rotating drum reactor (RDR) operated at atmospheric pressure. First, the k L for the mineral solution was in the range 6.38 × 10−4–7.69 × 10−4 m s−1, which was of the same order of magnitude as those calculated for closed rotating drums supplied with air flow. In general, k L of RDR implemented with lifters was superior or equal to that of RDR without lifters. For RDR implemented with lifters, k L increased with N in the range 6.65 × 10−4–10.51 × 10−4 m s−1, whereas k L of RDR without lifters first increased with N up to N = 0.102 s−1, and decreased beyond this point. Second, regarding soil slurry experiments, an abrupt fall of k L (ca. 50%) at low values of the solid concentration (C v) and an asymptotic pattern at high C v were observed at N = 0.25 s−1. These results suggest that mass transfer phenomena were commanded by the slurry properties and a semi-empirical equation of the form Sh = f(Re, Sc) seems to corroborate this finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

gas–liquid interfacial area in the rotating drum (m2)

A segment :

segment of area in the flat face of the rotating drum (m2)

a :

gas–liquid interfacial area per unit liquid (or slurry) volume (m−1)

b :

parameter of Eq. 1

\( C^{{\text{*}}}_{{{{\rm O}}_{2} }} \) :

oxygen saturated solubility (mol O2 m−3)

\( C_{{\rm O}_2} \) :

oxygen concentration in the bulk liquid (mineral solution or slurry) (mol O2 m−3)

C v :

volumetric fraction of solids, dimensionless

d :

parameter of Eq. 1

d p :

diameter of the solid particle

D h :

hydraulic diameter (D h = 4 × r h) (m)

D AB :

oxygen (A) diffusivity in the mineral solution or slurry (B) (m2 s−1)

Fr :

dimensionless number of Froude, \( Fr = \frac{{\upsilon ^{{\text{2}}}_{{{\rm T}}} }} {{g \times D_{{{\rm h}}} }} \)

g :

gravitational acceleration (m s−2)

H :

height of slurry in the RDR, m

ID:

internal diameter of the rotating drum (m)

IDah :

internal diameter of the aeration holes (m)

k L :

coefficient of mass transfer (m s−1)

k *L :

coefficient of mass transfer at large C v (m s−1)

k L a :

volumetric coefficient of mass transfer (s−1)

k L0 :

coefficient of mass transfer in the mineral solution (0% v/v of solids) treated in a rotating drum at 0.25 s−1

l :

cord length of mineral solution (or slurry) in the flat face of the RDR (m)

L :

length of the rotating drum (m)

m :

parameter of Eq. 1

n :

parameter of Eq. 1

N :

rotational speed (s−1)

N c :

critical velocity (s−1)

OTR:

oxygen transfer rate (mol s−1)

RDR:

rotating drum reactor

Re :

dimensionless number of Reynolds, \( Re = \frac{ {\upsilon _{\rm T}} \times \rho \times D_{\rm h} } {\mu } \)

r :

internal radius of the rotating drum (m)

r h :

hydraulic radius (m)

S :

exponent in the Eq. 12. It is interpreted as a sensitivity coefficient, dimensionless

Sc :

dimensionless number of Schmidt, \( Sc = \frac{\mu } {\rho \times D_{\rm AB}} \)

Sh :

dimensionless number of Sherwood, \( Sh = \frac{{k_{{{\rm L}}} \times D_{{{\rm h}}} }} {{D_{{{{\rm AB}}}} }} \)

V :

mineral solution (or slurry) volume (m3)

μ :

viscosity of the mineral solution (Pa s)

μ B :

viscosity of the slurry (Pa s)

ρ :

density of the mineral solution (kg m−3)

ρ B :

density of the slurry (kg m−3)

υ T :

tangential velocity (m s−1)

A:

oxygen

ah:

aeration holes

B:

slurry

h:

hydraulic

References

  1. Kwapinska M, Saage G, Tsotsas E (2006) Mixing of particles in rotary drums: a comparison of discrete element simulations with experimental results and penetration models for thermal processes. Powder Technol 161(1):69–78

    Article  CAS  Google Scholar 

  2. Santomaso A, Olivi M, Canu P (2004) Mechanisms of mixing of granular materials in drum mixers under rolling regime. Chem Eng Sci 59(16):3269–3280

    Article  CAS  Google Scholar 

  3. Jauhari R, Gray MR, Masliyah JH (1998) Gas-solid mass transfer in a rotating drum. Can J Chem Eng 76:224–232

    CAS  Google Scholar 

  4. Shibasaki N, Hirose K, Yonemoto T, Tadaki T (1992) Suspension culture of Nicotiana tabacum Cells in a rotary-drum bioreactor. J Chem Technol Biot 53:359–363

    CAS  Google Scholar 

  5. Woo SH, Park JM (1999) Evaluation of drum bioreactor performance used for decontamination of soil polluted with polycyclic aromatic hydrocarbons. J Chem Technol Biotechnol 74:937–944

    Article  CAS  Google Scholar 

  6. Brinkmann D, Röhrs J, Schügerl C (1998) Bioremediation of diesel fuel contaminated soil in a rotating bioreactor. Part I: influence of oxygen saturation. Chem Eng Technol Commun 21(2):168–172

    Article  CAS  Google Scholar 

  7. Wang SJ, Zhong JJ, Chen YL, Yu JT (1995) Characterization and modelling of oxygen transfer in a 20l modified cell-lift bioreactor with a double-screen cage. J Ferment Bioeng 80(1):71–77

    Article  CAS  Google Scholar 

  8. Maier B, Dietrich C, Büchs J (2001) Correct application of the sulphite oxidation methodology of measuring the volumetric mass transfer coefficient kLa under non-pressurized and pressurized conditions. Trans IChemE 79(Pt C):1–7

    Google Scholar 

  9. Yang JD, Wang NS (1992) Oxygen mass transfer enhancement via fermentor headspace pressurization. Biotechnol Prog 8(3):244–251

    Article  CAS  Google Scholar 

  10. Kubsad V, Chaudhari S, Cupta SK (2004) Model of oxygen in rotating biological contactor. Water Res 38:4297–4304

    Article  CAS  Google Scholar 

  11. Hardin MT, Howes T, Mitchell DA (2000) Mass transfer correlations for rotating drum bioreactors. J Biotechnol 297:89–101

    Google Scholar 

  12. Kawase Y, Halard B, Moo-Young M (1992) Liquid-phase mass transfer coefficients in bioreactors. Biotech Bioeng 39:1133–1140

    Article  CAS  Google Scholar 

  13. Reuss M (1993) Oxygen transfer and mixing scale-up implications. In: Rehm HJ, Reed G (eds) Biotechnology, vol 3 (Bioprocessing). VCH, Weinheim, pp 190–217

  14. Welty JR, Wicks CE, Wilson RE, Gregory R (2001) Fundamentals of momentum, heat and mass transfer, 4th edn. Wiley, USA

    Google Scholar 

  15. Manilla-Pérez E, Poggi-Varaldo HM, Chávez-Gómez B, Esparza-García F, Barrera-Cortés J (2004) Evaluation of a rotatory drum used for bioremediation of a hydrocarbon contaminated soil (in spanish). Interciencia 29(9):515–520

    Google Scholar 

  16. Clescer LS, Greenberg AE, Trussell RR (eds) (1989) Standard methods for examination of water and wastewater, 17th edn, APHA, AWWA and WPCF, Washington DC, USA

  17. Bailey J, Ollis DF (1986) Biochemical engineering fundamentals, 2nd edn. McGraw Hill, USA, pp 16–24

    Google Scholar 

  18. Perry RH, Chilton CH (1973) Chemical engineers’ handbook. MacGraw-Hill International Company, USA

    Google Scholar 

  19. Gray MR, Mehta B, Masliyah JH (1993) Liquid-side mass transfer coefficients for liquids and slurries in a rotating drum. Chem Eng Sci 48 (19):3442–3446

    Article  CAS  Google Scholar 

  20. Hermann R, Walther N, Maier U, Büchs J (2001) Optical method for the determination of the oxygen-transfer capacity of small bioreactors based on sulfiteoxidation. Biotech Bioeng 74:355–363

    Article  CAS  Google Scholar 

  21. Brady NC (1974) The nature properties of soils. MacMillan, New York

    Google Scholar 

  22. McCabe W, Smith J, Harriot P (2001) Unit operations of chemical engineering, 6th edn. McGraw Hill, USA

    Google Scholar 

  23. Van der Gulik GJS, Wijers JG, Keurentjes JTF (2001) Hydrodynamics and scale-up of horizontal stirred reactors. Ind Eng Chem Res 40:4731–4740

    Article  CAS  Google Scholar 

  24. Mukhopadhyay SN, Ghose TK (1978) Oxygen transfer in laboratory horizontal rotary fermentor under varying speed. J Ferment Technol 56(5):558–560

    Google Scholar 

  25. Subrata KM, Kamal Ch, Dhiren SD, Gautam K (2006) Studies on flow characteristics of coal–oil–water slurry system. Int J Miner Process 79(4):217–224

    Article  CAS  Google Scholar 

  26. Alper E, Wichtendahl B, Deckwer WD (1980) Gas absorption mechanism in catalytic slurry reactors. Chem Eng Sci 35:217–220

    Article  CAS  Google Scholar 

  27. Miyachi M, Iguchi A, Uchida S, Koide K (1981) Effect of solid particles in liquid-phase on liquid-side mass transfer coefficient. Can J Chem Eng 59:640–641

    Article  CAS  Google Scholar 

  28. Joosten GEH, Schilder JGM, Janssen JJ (1977) The influence of suspended solids material on the gas-liquid mass transfer in stirred gas-liquid contators. Chem Eng Sci 32:563–566

    Article  CAS  Google Scholar 

  29. Baldwin S, Cheng RC, Demopoulos GP (2000) A contribution to the measurement of oxygen mass transfer in a laboratory pressure reactor. J Chem Technol Biotechnol 75:665–672

    Article  CAS  Google Scholar 

  30. Tanaka H, Nishijima F, Suwa M, Iwamoto T (1983) Rotating drum fermentor for plant cell suspension cultures. Biotech Bioeng 25:2359–2370

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors wish to thank to CONACYT and SEMARNAT for the financial support of this work through the project SEMARNAT-2002-C01-0154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josefina Barrera-Cortés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrera-Cortés, J., Manilla-Pérez, E. & Poggi-Varaldo, H.M. Oxygen transfer to slurries treated in a rotating drum operated at atmospheric pressure. Bioprocess Biosyst Eng 29, 391–398 (2006). https://doi.org/10.1007/s00449-006-0088-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-006-0088-6

Keywords

Navigation