Skip to main content
Log in

The pivotal role of Vulcanian activity in ending the explosive phase of rhyolitic eruptions: the case of the Big Obsidian Flow eruption (Newberry Volcano, USA)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Explosive volcanism produces myriad hazards from pyroclastic flows to widespread ejecta dispersal. Effusive eruptions can emit noxious, damaging gases and extensive lava flows. A single eruption of silicic magma can produce both types of activity, sometimes concurrently. Understanding what drives such eruptions, their transitions in styles, and associated hazards requires detailed observations of eruptions and analysis of resulting products. The physical and geochemical characteristics of pyroclasts serve as snapshots of final conduit processes before their egress. Here, we examine the explosive phase of the 640 CE rhyolitic eruption of Newberry Volcano (OR, USA), which began with sub-Plinian pyroclastic fallout and terminated with the effusion of the Big Obsidian Flow. To better understand shallow conduit dynamics, we combine previous work on the geochemistry and textures of obsidian pyroclasts with our detailed physical and textural analyses of > 2000 pumices from 37 layers pulled from 4 pits along the dispersal axis. We analyze the density, mass, and volume distribution of ash and lapilli layers and also examine external the texture of the latter. As with the rhyolitic eruptions of Volcán Chaitén in 2008 and Cordón Caulle in 2011–2012 (both in Chile), we find transitory Vulcanian pulses to be the link between the initial Subplinian phase and subsequent effusive activity. We also concur with recent studies that the syn-eruptive formation of obsidian by ash agglomeration and sintering along the conduit edges above the fragmentation level modulates eruptive style, ultimately leading to the subaerial effusion of rhyolitic lava.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adams NK, Houghton BF, Hildreth W (2006) Abrupt transitions during sustained explosive eruptions: examples from the 1912 eruption of Novarupta. Alaska Bull Volcanol 69(2):189–206

    Article  Google Scholar 

  • Alidibirov M, Dingwell DB (1996) Magma fragmentation by rapid decompression. Nature 380:146–149

    Article  Google Scholar 

  • Aravena Á, Cioni R, Vitturi MDM, Neri A (2018) Conduit stability effects on intensity and steadiness of explosive eruptions. Sci Rep 8(1):1–9

    Article  Google Scholar 

  • Austin‐Erickson A, Büttner R, Dellino P, Ort MH, Zimanowski B (2008) Phreatomagmatic explosions of rhyolitic magma: experimental and field evidence. J Geophys Res Solid Earth 113(B11)

  • Bacon CR (1983) Eruptive history of Mount Mazama and Crater Lake caldera, Cascade Range, USA. J Volcanol Geoth Res 18(1–4):57–115

    Article  Google Scholar 

  • Baxter PJ, Horwell CJ (2015) Impacts of eruptions on human health. The encyclopedia of volcanoes: 2nd edition. Elsevier. pp. 1035–1047

  • Black AB, Manga M, Andrews B (2016) Ash production and dispersal from sustained Mono-Inyo eruptions. Bull Volcanol 78(57). https://doi.org/10.1007/s00445-016-1053-0

  • Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75(8):1–19

    Article  Google Scholar 

  • Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res Solid Earth 108(B7):1–28. https://doi.org/10.1029/2002jb002034

    Article  Google Scholar 

  • Burgisser A, Arbaret L, Druitt TH, Giachetti T (2010) Pre-explosive conduit conditions of the 1997 Vulcanian explosions at Soufrière Hills Volcano, Montserrat: II. Overpressure and depth distributions. J Volcanol Geotherm Res 199(3–4):193–205

    Article  Google Scholar 

  • Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens volcano. J Geophys Res Solid Earth 87(B8):7061–7072

    Article  Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions: modern and ancient. Allen Unwin London. https://doi.org/10.1007/978-94-009-3167-1

    Article  Google Scholar 

  • Cassidy M, Cole PD, Hicks KE, Varley NR, Peters N, Lerner AH (2015) Rapid and slow: varying magma ascent rates as a mechanism for Vulcanian explosions. Earth Planet Sci Lett 420:73–84

    Article  Google Scholar 

  • Cassidy M, Manga M, Cashman K, Bachmann O (2018) Controls on explosive-effusive volcanic eruption styles. Nat Commun 9(1):1–16

    Article  Google Scholar 

  • Castro JM, Dingwell DB (2009) Rapid ascent of rhyolitic magma at Chaitén volcano, Chile. Nature 461(7265):780–783

    Article  Google Scholar 

  • Castro JM, Gardner JE (2008) Did magma ascent rate control the explosive-effusive transition at the Inyo volcanic chain, California? Geology 36(4):279–282

    Article  Google Scholar 

  • Castro JM, Walter SC (2021) Hybrid rhyolitic eruptions at Big Glass Mountain, CA, USA. Volcanica 4(2):257–277. https://doi.org/10.30909/vol.04.02.257277

    Article  Google Scholar 

  • Castro JM, Cordonnier B, Tuffen H, Tobin MJ, Puskar L, Martin MC, Bechtel HA (2012) The role of melt-fracture degassing in defusing explosive rhyolite eruptions at volcán Chaitén. Earth Planet Sci Lett 333:63–69

    Article  Google Scholar 

  • Castro JM, Schipper CI, Mueller SP, Militzer AS, Amigo A, Parejas CS, Jacob D (2013) Storage and eruption of near-liquidus rhyolite magma at Condon Caulle, Chile. Bull Volcanol 75:702

    Article  Google Scholar 

  • Castro JM, Bindeman IN, Tuffen H, Schipper CI (2014) Explosive origin of silicic lava: Textural and δD–H2O evidence for pyroclastic degassing during rhyolite effusion. Earth Planet Sci Lett 405:52–61

    Article  Google Scholar 

  • Cioni R, Pistolesi M, Rosi M (2015) Plinian and Subplinian eruptions. The encyclopedia of volcanoes: 2nd edition. Elsevier. pp. 519–535

  • Clarke AB, Stephens S, Teasdale R, Sparks RSJ, Diller K (2007) Petrologic constraints on the decompression history of magma prior to Vulcanian explosions at the Soufrière Hills volcano, Montserrat. J Volcanol Geoth Res 161(4):261–274

    Article  Google Scholar 

  • Clarke AB, Ongaro TE, Belousov A (2015) Vulcanian eruptions. The encyclopedia of volcanoes: 2nd edition. Elsevier. pp. 505–518

  • Collini E, Osores MS, Folch A, Viramonte JG, Villarosa G, Salmuni G (2013) Volcanic ash forecast during the June 2011 Cordón Caulle eruption. Nat Hazards 66(2):389–412

    Article  Google Scholar 

  • Coppola D, Laiolo M, Franchi A, Massimetti F, Cigolini C, Lara LE (2017) Measuring effusion rates of obsidian lava flows by means of satellite thermal data. J Volcanol Geoth Res 347:82–90

    Article  Google Scholar 

  • Daggitt ML, Mather TA, Pyle DM, Page S (2014) AshCalc – a new tool for the comparison of the exponential, power-law and Weibull models of tephra deposition. J Appl Volcanol 3:7

    Article  Google Scholar 

  • Davies BV, Brown RJ, Barclay J et al (2021) Rapid eruptive transitions from low to high intensity explosions and effusive activity: insights from textural analysis of a small-volume trachytic eruption, Ascension Island, South Atlantic. Bull Volcanol 83(58). https://doi.org/10.1007/s00445-021-01480-1

  • Di Genova, Danilo, Kolzenburg S, Wiesmaier S, Dallanave E, Neuville DR, Kai-Uwe Hess, Dingwell DB (2017) A compositional tipping point governing the mobilization and eruption style of rhyolitic magma. Nature 552(7684):235–238

  • Donnelly-Nolan JM, Stovall WK, Ramsey DW, Ewert JW, Jensen RA (2011) Newberry Volcano—central Oregon’s sleeping giant. US Geol Surv Fact Sheet 3145(6)

  • Druitt TH, Young SR, Baptie B, Bonadonna C, Calder ES, Clarke AB, Cole PD, Harford CL, Herd RA, Luckett R, Ryan G (2002) Episodes of cyclic Vulcanian explosive activity with fountain collapse at Soufrière Hills Volcano, Montserrat. Memoirs-Geol Soc London 21:281–306

    Article  Google Scholar 

  • Dufek J, Manga M, Patel A (2012) Granular disruption during explosive volcanic eruptions. Nat Geosci 5(8):561–564

    Article  Google Scholar 

  • Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323(6089):598–602

    Article  Google Scholar 

  • Engwell SL, Sparks RSJ, Aspinall WP (2013) Quantifying uncertainties in the measurement of tephra fall thickness. J Appl Volcanol 2(1):1–12. https://doi.org/10.1186/2191-5040-2-5

    Article  Google Scholar 

  • Ewert JW (2007) System for ranking relative threats of US volcanoes. Nat Hazard Rev 8(4):112–124

    Article  Google Scholar 

  • Ewert JW, Diefenbach AK, Ramsey DW (2018) 2018 update to the US Geological Survey national volcanic threat assessment (No. 2018–5140). US Geological Survey

  • Fink JH, Pollard DD (1983) Structural evidence for dikes beneath silicic domes, Medicine Lake Highland Volcano. Calif Geol 11(8):458–461

    Article  Google Scholar 

  • Forte P, Castro JM (2019) H2O-content and temperature limit the explosive potential of rhyolite magma during Plinian eruptions. Earth Planet Sci Lett 506:157–167. https://doi.org/10.1016/j.epsl.2018.10.041

    Article  Google Scholar 

  • Gardner JE, Carey S, Sigurdsson H (1998) Plinian eruptions at Glacier Peak and Newberry volcanoes, United States: implications for volcanic hazards in the Cascade Range. Geol Soc Am Bull 110(2):173–187

    Article  Google Scholar 

  • Gardner JE, Llewellin EW, Watkins JM, Befus KS (2017) Formation of obsidian pyroclasts by sintering of ash particles in the volcanic conduit. Earth Planet Sci Lett 459:252–263

    Article  Google Scholar 

  • Gardner JE, Thomas RM, Jaupart C, Tait S (1996) Fragmentation of magma during Plinian volcanic eruptions. Bulletin of Volcanology 58(2–3):144–162

  • Giachetti T, Druitt TH, Burgisser A, Arbaret L, Galven C (2010) Bubble nucleation, growth and coalescence during the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat. J Volcanol Geoth Res 193(3–4):215–231

    Article  Google Scholar 

  • Giachetti T, Hudak MR, Shea T, Bindeman IN, Hoxsie EC (2020) D/H ratios and H2O contents record degassing and rehydration history of rhyolitic magma and pyroclasts. Earth Planet Sci Lett 530:115909

    Article  Google Scholar 

  • Giachetti T, Trafton KR, Wiejaczka J, Gardner JE, Watkins JM, Shea T, Wright HM (2021) The products of primary magma fragmentation finally revealed by pumice agglomerates. Geology 49(11):1307–1311

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2007) The fluid mechanics inside a volcano. Annu Rev Fluid Mech 39:321–356

    Article  Google Scholar 

  • Heath BA, Hooft EE, Toomey DR, Bezada MJ (2015) Imaging the magmatic system of Newberry Volcano using joint active source and teleseismic tomography. Geochem Geophys Geosyst 16(12):4433–4448

    Article  Google Scholar 

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51(6):451–462

    Article  Google Scholar 

  • Janebo MH, Houghton BF, Thordarson T, Bonadonna C, Carey RJ (2018) Total grain-size distribution of four subplinian–Plinian tephras from Hekla volcano, Iceland: Implications for sedimentation dynamics and eruption source parameters. J Volcanol Geoth Res 357:25–38

    Article  Google Scholar 

  • Jaupart C, Allègre CJ (1991) Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet Sci Lett 102(3–4):413–429

    Article  Google Scholar 

  • Jensen R, Donnelly Nolan J, Mckay D (2009) A field guide to Newberry Volcano, Oregon, in Volcanoes to Vineyards: Geologic Field Trips Through the Dynamic Landscape of the Pacific Northwest, Field Guide, vol. 15, pp. 53–79, Geol Soc of Am Boulder, Colo. https://doi.org/10.1130/2009.fld015(03)

  • Jones TJ, Russell JK (2017) Ash production by attrition in volcanic conduits and plumes. Sci Rep 7(1):1–12

    Article  Google Scholar 

  • Jordan BT, Grunder AL, Duncan RA, Deino AL (2004) Geochronology of age‐progressive volcanism of the Oregon High Lava Plains: implications for the plume interpretation of Yellowstone. J Geophys Res Solid Earth 109(B10)

  • Kansal AR, Torquato S, Stillinger FH (2002) Computer generation of dense polydisperse sphere packings. J Chem Phys 117(18):8212–8218

    Article  Google Scholar 

  • Kennedy BM, Spieler O, Scheu B, Kueppers U, Taddeucci J, Dingwell DB (2005) Conduit implosion during Vulcanian eruptions Geology 33(7):581–584

  • Klawonn M, Houghton BF, Swanson DA, Fagents SA, Wessel P, Wolfe CJ (2014) Constraining explosive volcanism: subjective choices during estimates of eruption magnitude. Bull Volcanol 76(2):1–6. https://doi.org/10.1007/s00445-013-0793-3

    Article  Google Scholar 

  • Klawonn M, Houghton BF, Swanson DA, Fagents SA, Wessel P, Wolfe CJ (2014) From field data to volumes: constraining uncertainties in pyroclastic eruption parameters. Bull Volcanol 76(7):1–16. https://doi.org/10.1007/s00445-014-0839-1

    Article  Google Scholar 

  • Klug C, Cashman KV, Bacon C (2002) Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon. Bull Volcanol 64(7):486–501

    Article  Google Scholar 

  • Kuehn SC (2002) Stratigraphy, distribution, and geochemistry of the Newberry Volcano tephras. PhD thesis. Washington State University.

  • Kuehn SC, Foit FF Jr (2006) Correlation of widespread Holocene and Pleistocene tephra layers from Newberry Volcano, Oregon, USA, using glass compositions and numerical analysis. Quatern Int 148(1):113–137

    Article  Google Scholar 

  • LaRue A, Baker DR, Polacci M, Allard P, Sodini N (2013) Can vesicle size distributions assess eruption intensity during volcanic activity? Solid Earth 4(2):373–380

    Article  Google Scholar 

  • Le Pennec J-L, Ruiz GA, Ramon P, Palacios E, Mothes P, Yepes H (2012) Impact of tephra falls on Andean communities: the influences of eruption size and weather conditions during the 1999–2001 activity of Tungurahua volcano, Ecuador. J Volcanol Geotherm Res 217–218:91–103

    Article  Google Scholar 

  • Macleod NS, Sherrod DR (1988) Geologic evidence for a magma chamber beneath Newberry Volcano, Oregon. Journal of Geophysical Research 93(89):10067–10079.

  • MacLeod NS, Sherrod DR, Chitwood LA, Jensen RA (1995) Geologic map of Newberry Volcano, Deschutes, Kalamath, and Lake Counties, Oregon: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-2455, scales 1:62,5000 and 1:24,000

  • Miwa T, Iriyama Y, Nagai M, Nanayama F (2020) Sedimentation process of ashfall during a Vulcanian eruption as revealed by high-temporal-resolution grain size analysis and high-speed camera imaging. Prog Earth Planet Sci 7(1):1–16

    Article  Google Scholar 

  • Mueller S, Scheu B, Kueppers U, Spieler O, Richard D, Dingwell DB (2011) The porosity of pyroclasts as an indicator of volcanic explosivity. J Volcanol Geoth Res 203(3–4):168–174

    Article  Google Scholar 

  • Nguyen CT, Gonnermann HM, Houghton BF (2014) Explosive to effusive transition during the largest volcanic eruption of the 20th century (Novarupta 1912, Alaska). Geology 42(8):703–706

    Article  Google Scholar 

  • Ogburn SE, Loughlin SC, Calder ES (2015) The association of lava dome growth with major explosive activity (VEI≥ 4): DomeHaz, a global dataset. Bull Volcanol 77(5):1–17

    Article  Google Scholar 

  • Ohashi M, Ichihara M, Kennedy B, Gravley D (2021) Comparison of bubble shape model results with textural analysis: implications for the velocity profile across a volcanic conduit. J Geophys Res Solid Earth e2021JB021841

  • Paisley R, Berlo K, Ghaleb B, Tuffen H (2019) Geochemical constraints on the role of tuffisite veins in degassing at the 2008–09 Chaitén and 2011–12 Cordón Caulle rhyolite eruptions. J Volcanol Geoth Res 380:80–93

    Article  Google Scholar 

  • Palladino DM, Simei S, Kyriakopoulos K (2008) On magma fragmentation by conduit shear stress: evidence from the Kos Plateau Tuff, Aegean Volcanic Arc. J Volcanol Geoth Res 178(4):807–817

    Article  Google Scholar 

  • Pistolesi M, Cioni R, Bonadonna C, Elissondo M, Baumann V, Bertagnini A, Francalanci L (2015) Complex dynamics of small-moderate volcanic events: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile. Bull Volcanol 77(1):1–24

    Article  Google Scholar 

  • Popa RG, Bachmann O, Huber C (2021) Explosive or effusive style of volcanic eruption determined by magma storage conditions. Nat Geosci 14(10):781–786

    Article  Google Scholar 

  • Ruprecht P, Bachmann O (2010) Pre-eruptive reheating during magma mixing at Quizapu volcano and the implications for the explosiveness of silicic arc volcanoes. Geology 38(10):919–922

    Article  Google Scholar 

  • Rust AC, Cashman KV (2007) Multiple origins of obsidian pyroclasts and implications for changes in the dynamics of the 1300 BP eruption of Newberry Volcano, USA. Bull Volcanol 69(8):825–845

    Article  Google Scholar 

  • Saubin E, Tuffen H, Gurioli L, Owen J, Castro JM, Berlo K, McGowan EM, Schipper CI, Wehbe K (2016) Conduit dynamics in transitional rhyolitic activity recorded by tuffisite vein textures from the 2008-2009 Chaitén Eruption. Front Earth Sci 4. https://doi.org/10.3389/feart.2016.00059

  • Saxby J, Rust A, Beckett F, Cashman K, Rodger H (2020) Estimating the 3D shape of volcanic ash to better understand sedimentation processes and improve atmospheric dispersion modelling. Earth Planet Sci Lett 534

  • Scandone R, Cashman KV, Malone SD (2007) Magma supply, magma ascent and the style of volcanic eruptions. Earth Planet Sci Lett 253(3–4):513–529

    Article  Google Scholar 

  • Schipper CI, Castro JM, Tuffen H, James MR, How P (2013) Shallow vent architecture during hybrid explosive–effusive activity at Cordón Caulle (Chile, 2011–12): evidence from direct observations and pyroclast textures. J Volcanol Geoth Res 262:25–37

    Article  Google Scholar 

  • Schipper CI, Castro JM, Kennedy BM, Tuffen H, Whattam J, Wadsworth FB, Alloway BV (2021) Silicic conduits as supersized tuffisites: clastogenic influences on shifting eruption styles at Cordón Caulle volcano (Chile). Bull Volcanol 83(2):1–22

    Article  Google Scholar 

  • Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Vol Geotherm Res 190:271–289

  • Sherrod DR (1997) Volcano hazards at Newberry volcano, Oregon (pp. 97–513). The survey

  • Sherrod DR, MacLeod NS (1979) The last eruptions at Newberry Volcano, central Oregon. In Geol Soc Am Abstr Programs 11(3):127

    Google Scholar 

  • Sieh K, Bursik M (1986) Most recent eruption of the Mono Craters, eastern central California. J Geophys Res Solid Earth 91(B12):12539–12571

    Article  Google Scholar 

  • Silva Parejas C, Lara LE, Bertin D, Amigo A, Orozco G (2012) The 2011–2012 eruption of Cordón Caulle volcano (Southern Andes): evolution, crisis management and current hazards. In EGU General Assembly Conference Abstracts (p. 9382)

  • Sparks RSJ, Melnik O (1999) Nonlinear dynamics of lava dome extrusion. Nature 402:37–41

    Article  Google Scholar 

  • Spieler O, Kennedy B, Kueppers U, Dingwell DB, Scheu B, Taddeucci J (2004) The fragmentation threshold of pyroclastic rocks. Earth Planet Sci Lett 226(1–2):139–148

    Article  Google Scholar 

  • Stasusik M, Barclay J, Carroll MR, Jaupart C, Ratté JC, Sparks S, Tait S (1996) Degassing during magma ascent in the Mule Creek vent (USA). Bull Volcanol 58(2):117–130. https://doi.org/10.1007/s004450050130

    Article  Google Scholar 

  • Taddeucci J, Wohletz KH (2001) Temporal evolution of the Minoan eruption (Santorini, Greece), as recorded by its Plinian fall deposit and interlayered ash flow beds. J Volcanol Geoth Res 109(4):299–317

    Article  Google Scholar 

  • Till CB, Grove TL, Carlson RW, Donnelly-Nolan JM, Fouch MJ, Wagner LS, Hart WK (2013) Depths and temperatures of< 10.5 Ma mantle melting and the lithosphere-asthenosphere boundary below southern Oregon and northern California. Geochem Geophys Geosyst 14(4):864–879

    Article  Google Scholar 

  • Trafton KR, Giachetti T (2021) The morphology and texture of Plinian pyroclasts reflect their lateral sourcing in the conduit. Earth Planet Sci Lett 562:116844

    Article  Google Scholar 

  • Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31:1089–1092

  • Wadsworth FB, Llewellin EW, Vasseur J, Gardner JE, Tuffen H (2020) Explosive-effusive volcanic eruption transitions caused by sintering. Sci Adv 6(39):eaba7940

    Article  Google Scholar 

  • Walker GP (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62(2):431–446

    Article  Google Scholar 

  • Walker GW, MacLeod NS (1991) Geologic map of Oregon: Reston, Va., U.S. Geological Survey, scale 1:500,000

  • Watkins JM, Gardner JE, Befus KS (2017) Nonequilibrium degassing, regassing, and vapor fluxing in magmatic feeder systems. Geology 45(2):183–186

    Article  Google Scholar 

  • Wearn KM (2002) Obsidian pyroclast from the Cleetwood and Rock Mesa eruptions, Central Oregon. MSc thesis, University of Oregon, Eugene

  • Wicks C, de La Llera JC, Lara LE, Lowenstern J (2011) The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile. Nature 478(7369):374–377

    Article  Google Scholar 

  • Wiejaczka J, Giachetti T (2022) Using eruption source parameters and high-resolution grain-size distributions of the 7.7 ka Cleetwood Eruption of Mount Mazama (Oregon, United States) to reveal primary and secondary eruptive processes. Front Earth Sci 460

  • Wright HM, Cashman KV, Rosi M, Cioni R (2007) Breadcrust bombs as indicators of Vulcanian eruption dynamics at Guagua Pichincha volcano, Ecuador. Bull Volcanol 69(3):281–300

    Article  Google Scholar 

  • Xue M, Allen RM (2006) Origin of the Newberry Hotspot Track: evidence from shear-wave splitting. Earth Planet Sci Lett 244(1–2):315–322

    Article  Google Scholar 

Download references

Acknowledgements

Thank you to J. Wiejaczka for the help in the field and to the U.S. Forest Service for permitting us to dig and collect samples. We also thank N.B. Plumb who helped organize, sort, and classify some of the pumices. We thank Hugh Tuffen and an anonymous reviewer for their insight that greatly improved the manuscript. We also thank Ulrich Küppers and Jacopo Taddeucci for their care in editing and handling the manuscript.

Funding

K.R. Trafton was partly funded by a grant from Sigma Xi and the Geological Society of America. T. Giachetti and K.R. Trafton were partly funded by the National Science Foundation grant EAR-1725207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen R. Trafton.

Additional information

Editorial responsibility: U. Kueppers; Deputy Executive Editor: J. Tadeucci

This paper constitutes part of a topical collection:

What pyroclasts can tell us

Appendix

Appendix

Fig. 9
figure 9

Physical data by stratigraphic layer for pits KT-2a, KT-17a, and KT-20a. LP is Lower Pumice, UP is Upper Pumice

Fig. 10
figure 10

Thickness of the Newberry a) Lower Pumice and b) Upper pumice versus the square root of the area of the corresponding isopach ellipse. Figure modified from an AshCalc model that fit the data using a Weibull function (Daggitt et al. 2014)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trafton, K.R., Giachetti, T. The pivotal role of Vulcanian activity in ending the explosive phase of rhyolitic eruptions: the case of the Big Obsidian Flow eruption (Newberry Volcano, USA). Bull Volcanol 84, 104 (2022). https://doi.org/10.1007/s00445-022-01610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-022-01610-3

Keywords

Navigation