Skip to main content

Advertisement

Log in

The centenary of IAVCEI 1919–2019 and beyond: The people, places, and things of volcano geodesy

  • Review Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Over the first century of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI), volcano geodesy grew from roots as an accidental and incidental system of measurements to an important method for monitoring volcanic activity and forecasting eruptions. The first practitioners in volcano geodesy were experts in other disciplines, and it was not until the latter half of the twentieth century that specialists in the field emerged—scientists who developed new methods, measured geodetic change at volcanoes, and quantitatively interpreted the results in terms of magmatic processes. Much of the early work in the field was restricted to a few volcanoes and involved techniques that had been adapted from other applications; relatively few methods were developed specifically for use on volcanoes. These volcanoes, however, provided the natural laboratories needed to advance the field. By the start of the twenty-first century, geodetic studies, especially using space-based techniques, contributed to the recognition of deformation and gravity change at hundreds of volcanoes on Earth. In coming years, IAVCEI researchers will focus on comprehensive exploitation of the growing volumes of geodetic data to better model, forecast, and track activity at volcanoes worldwide. Meanwhile, the field needs to become more diverse, better representing people who live in the shadows of volcanoes around the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Anantrasirichai N, Biggs J, Albino F, Bull D (2019) The application of convolutional neural networks to detect slow, sustained deformation in InSAR time series. Geophys Res Lett 46:11,850-11,858. https://doi.org/10.1029/2019GL084993

    Article  Google Scholar 

  • Anantrasirichai N, Biggs J, Albino F, Hill P, Bull D (2018) Application of machine learning to classification of volcanic deformation in routinely generated InSAR data. J Geophys Res 123:6,592-6,606. https://doi.org/10.1029/2018JB015911

    Article  Google Scholar 

  • Anderson EM (1936) The dynamics of the formation of cone-sheets, ring-dykes, and caldron-subsidences. Proc R Soc Edinb 56:128–157

    Article  Google Scholar 

  • Anderson KR, Johanson IA (2022) Incremental caldera collapse at Kīlauea Volcano recorded in ground tilt and high-rate GNSS data, with implications for collapse dynamics and the magma system. Bull Volcanol 84:89. https://doi.org/10.1007/s00445-022-01589-x

  • Anderson KR, Poland MP (2016) Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012. Earth Planet Sci Lett 447:161–171. https://doi.org/10.1016/j.epsl.2016.04.029

    Article  Google Scholar 

  • Anderson K, Segall P (2011) Physics-based models of ground deformation and extrusion rate at effusively erupting volcanoes. J Geophys Res 116. https://doi.org/10.1029/2010JB007939

  • Anderson K, Segall P (2013) Bayesian inversion of data from effusive volcanic eruptions using physics-based models: Application to Mount St. Helens 2004–2008. J Geophys Res 118:2017–2037. https://doi.org/10.1002/jgrb.50169

    Article  Google Scholar 

  • Anderson KR, Johanson IA, Patrick MR, Mengyang G, Segall P, Poland MP, Montgomery-Brown EK, Miklius A (2019) Magma reservoir failure and the onset of caldera collapse at Kīlauea Volcano in 2018. Science 366:eaaz1822. https://doi.org/10.1126/science.aaz1822

    Article  Google Scholar 

  • Antoni-Micollier L, Carbone D, Ménoret V, Lautier-Gaud J, King T, Greco F, Messina A, Contrafatto D, Desruelle B. (2022) Detecting volcano-related underground mass changes with a quantum gravimeter. Geophys Res Lett. https://doi.org/10.1002/essoar.10510251.1

  • Babbage C (1847) Observations on the temple of Serapis at Pozzuoli near Naples; with an attempt to explain the causes of the frequent elevation and depression of large portions of the earth's surface in remote periods, and to prove that those causes continue in action at the present time. With a supplement. Conjectures on the physical condition of the surface of the moon. 42 p

  • Bagnardi M, Poland MP, Carbone D, Baker S, Battaglia M, Amelung F (2014) Gravity changes and deformation at Kīlauea Volcano, Hawaii, associated with summit eruptive activity, 2009–2012. J Geophys Res 119:7288–7305. https://doi.org/10.1002/2014JB011506

    Article  Google Scholar 

  • Bagnardi M, González PJ, Hooper A (2016) High-resolution digital elevation model from tri-stereo Pleiades-1 satellite imagery for lava flow volume estimates at Fogo Volcano. Geophys Res Lett 43:6267–6275. https://doi.org/10.1002/2016GL069457

    Article  Google Scholar 

  • Barberi F, Corrado G, Innocenti F, Luongo G (1984) Phlegraean Fields 1982–1984: Brief chronicle of a volcano emergency in a densely populated area. Bull Volcanol 47:175–185. https://doi.org/10.1007/BF01961547

    Article  Google Scholar 

  • Battaglia M, Troise C, Obrizzo F, Pingue F, De Natale G (2006) Evidence for fluid migration as the source of deformation at Campi Flegrei caldera (Italy). Geophys Res Lett 33. https://doi.org/10.1029/2005GL024904

  • Beane RJ, Baer EMD, Lockwood R, Macdonald RH, McDaris JR, Morris VR, Villalobos IJ, White LD (2021) Uneven increases in racial diversity of US geoscience undergraduates. Commun Earth Environ 2:126. https://doi.org/10.1038/s43247-021-00196-6

    Article  Google Scholar 

  • Bernard RE, Cooperdock EHG (2018) No progress on diversity in 40 years. Nat Geosci 11:292–295. https://doi.org/10.1038/s41561-018-0116-6

    Article  Google Scholar 

  • Biggs J, Pritchard ME (2017) Global volcano monitoring: what does it mean when volcanoes deform? Elements 13:17–22. https://doi.org/10.2113/gselements.13.1.17

    Article  Google Scholar 

  • Biggs J, Ebmeier SK, Aspinall WP, Lu Z, Pritchard ME, Sparks RSJ, Mather TA (2014) Global link between deformation and volcanic eruption quantified by satellite imagery. Nat Commun 5:3471. https://doi.org/10.1038/ncomms4471

    Article  Google Scholar 

  • Bonaccorso A, Currenti G, Linde A, Sacks S, Sicali A (2020) Advances in understanding intrusive, explosive and effusive processes as revealed by the borehole dilatometer network on Mt. Etna Volcano. Front Earth Sci 7:357. https://doi.org/10.3389/feart.2019.00357

    Article  Google Scholar 

  • Branca S, Carbone D, Greco F (2003) Intrusive mechanism of the 2002 NE-Rift eruption at Mt. Etna (Italy) inferred through continuous microgravity data and volcanological evidences. Geophys Res Lett 30. https://doi.org/10.1029/2003GL018250

  • Carbone D, Poland MP, Patrick MR, Orr TR (2013) Continuous gravity measurements reveal a low-density lava lake at Kīlauea Volcano, Hawai‘i. Earth Planet Sci Lett 376:178–185. https://doi.org/10.1016/j.epsl.2013.06.024

  • Carbone D, Antoni-Micollier L, Hammond G, de Zeeuw-van Dalfsen D, Rivalta E, Bonadonna C, Messina A, Lautier-Gaud J, Toland K, Koymans M, Anastasiou K, Bramsiepe S, Cannavò F, Contrafatto D, Frischknecht C, Greco F, Marocco G, Middlemiss R, Ménoret V, Noack A, Passarelli L, Paul D, Prasad A, Siligato G, Vermeulen P (2020) The NEWTON-g gravity imager: towards new paradigms for terrain gravimetry. Front Earth Sci 8:573396. https://doi.org/10.3389/feart.2020.573396

    Article  Google Scholar 

  • Carbone D, Poland MP, Diament M, Greco F (2017) The added value of time-variable microgravimetry to the understanding of how volcanoes work. Earth Sci Rev 169:146–179. https://doi.org/10.1016/j.earscirev.2017.04.014

    Article  Google Scholar 

  • Cas RAF (2022) The centenary of IAVCEI 1919–2019 and beyond: origins and evolution of the International Association of Volcanology and Chemistry of the Earth’s Interior. Bull Volcanol 84:15. https://doi.org/10.1007/s00445-021-01509-5

    Article  Google Scholar 

  • Cervelli PF, Miklius A (2003) The shallow magmatic system of Kilauea volcano. In: Heliker C, Swanson DA, Takahashi TJ (eds) The Pu'u O'o-Kupaianaha Eruption of Kilauea Volcano, Hawaii: The First 20 Years, United States Geological Survey Professional Paper 1676. pp 149–163

  • Cervelli PF, Fournier T, Freymueller J, Power JA (2006) Ground deformation associated with the precursory unrest and early phases of the January 2006 eruption of Augustine Volcano, Alaska. Geophys Res Lett 33. https://doi.org/10.1029/2006GL027219

  • Couffer JC (1956) The disappearance of Urvina Bay. Nat Hist 65:378–383

    Google Scholar 

  • Cullen AB, McBirney AR, Rogers RD (1987) Structural controls on the morphology of Galapagos shields. J Volcanol Geoth Res 34:143–151. https://doi.org/10.1016/0377-0273(87)90099-0

    Article  Google Scholar 

  • Davis PM (1986) Surface deformation due to inflation of an arbitrarily oriented triaxial ellipsoidal cavity in an elastic half-space, with reference to Kilauea Volcano, Hawaii. J Geophys Res 91:7429–7438. https://doi.org/10.1029/JB091iB07p07429

    Article  Google Scholar 

  • De Martino P, Dolce M, Brandi G, Scarpato G, Tammaro U (2021) The ground deformation history of the neapolitan volcanic area (Campi Flegrei caldera, Somma-Vesuvius volcano, and Ischia Island) from 20 years of continuous GPS observations (2000–2019). Remote Sens 13:2725. https://doi.org/10.3390/rs13142725

    Article  Google Scholar 

  • de Zeeuw-van Dalfsen E, Sleeman R (2018) A permanent, real-time monitoring network for the volcanoes Mount Scenery and The Quill in the Caribbean Netherlands. Geosciences 8:320. https://doi.org/10.3390/geosciences8090320

    Article  Google Scholar 

  • de Zeeuw-van Dalfsen E, Rymer H, Sigmundsson F, Sturkell E (2005) Net gravity decrease at Askja volcano, Iceland: Constraints on processes responsible for continuous caldera deflation, 1988–2003. J Volcanol Geoth Res 139:227–239. https://doi.org/10.1016/j.jvolgeores.2004.08.008

    Article  Google Scholar 

  • Del Gaudio C, Aquino C, Ricciardi GP, Ricco C, Scandone R (2010) Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009. J Volcanol Geoth Res 195:48–56. https://doi.org/10.1016/j.jvolgeores.2010.05.014

    Article  Google Scholar 

  • Decker RW, Wright TL (1968) Deformation measurements on Mauna Loa Volcano, Hawaii. Bull Volcanol 32:401. https://doi.org/10.1007/BF02599779

    Article  Google Scholar 

  • Decker RW, Hill DP, Wright TL (1966) Deformation measurements on Kilauea Volcano, Hawaii. Bull Volcanol 29:721–731. https://doi.org/10.1007/BF02597190

    Article  Google Scholar 

  • Decker RW, Einarsson P, Mohr PA (1971) Rifting in Iceland: New geodetic data. Science 173:530–533. https://doi.org/10.1126/science.173.3996.530

    Article  Google Scholar 

  • Decker RW, Koyanagi RY, Dvorak JJ, Lockwood JP, Okamura AT, Yamashita KM, Tanigawa WR (1983) Seismicity and surface deformation of Mauna Loa Volcano, Hawaii. EOS Trans Am Geophys Un 64:545–547. https://doi.org/10.1029/EO064i037p00545-01

  • Decker RW, Okamura A, Miklius A, Poland MP (2008) Evolution of deformation studies on active Hawaiian volcanoes. U.S. Geological Survey Scientific Investigations Report 2008–5090, 23 p. https://doi.org/10.3133/sir20085090

  • Derrien A, Villeneuve N, Peltier A, Beauducel F (2015) Retrieving 65 years of volcano summit deformation from multi-temporal Structure-from-Motion: the case of Piton de la Fournaise (La Réunion Island). Geophys Res Lett 42(17):6959–6966. https://doi.org/10.1002/2015GL064820

    Article  Google Scholar 

  • Di Traglia F, Nolesini T, Intrieri E, Mugnai F, Leva D, Rosi M, Casagli N (2014) Review of ten years of volcano deformations recorded by the ground-based InSAR monitoring system at Stromboli volcano: a tool to mitigate volcano flank dynamics and intense volcanic activity. Earth Sci Rev 139:317–335. https://doi.org/10.1016/j.earscirev.2014.09.011

    Article  Google Scholar 

  • Dieterich JH, Decker RW (1975) Finite element modeling of surface deformation associated with volcanism. J Geophys Res 80:4094–4102. https://doi.org/10.1029/JB080i029p04094

    Article  Google Scholar 

  • Dowey N, Barclay B, Fernando B, Giles S, Houghton J, Jackson C, Khatwa A, Lawrence A, Mills K, Newton A, Rogers S, Williams R (2021) A UK perspective on tackling the geoscience racial diversity crisis in the Global North. Nat Geosci 14:256–259. https://doi.org/10.1038/s41561-021-00737-w

    Article  Google Scholar 

  • Dvorak JJ, Dzurisin D (1997) Volcano geodesy: The search for magma reservoir and the formation of eruptive vents. Rev Geophys 35:343–384. https://doi.org/10.1029/97RG00070

    Article  Google Scholar 

  • Dvorak JJ, Gasparini P (1991) History of earthquakes and vertical ground movement in Campi Flegrei caldera, Southern Italy: comparison of precursory events to the A.D. 1538 eruption of Monte Nuovo and of activity since 1968. J Volcanol Geoth Res 48:77–92. https://doi.org/10.1016/0377-0273(91)90034-W

    Article  Google Scholar 

  • Dvorak JJ, Mastrolorenzo G (1991) The mechanisms of recent vertical crustal movements in Campi Flegrei caldera, southern Italy. Geol Soc Am Sp Pap 163:47. https://doi.org/10.1130/SPE263

  • Dvorak JJ, Okamura AT, Lisowski M, Prescott WH, Svarc JL (1994) Global Positioning System Measurements on the Island of Hawaii from 1987 to 1990. U.S. Geological Survey Bulletin 2092, 33 p. https://pubs.usgs.gov/bul/2092/report.pdf

  • Dzurisin D (2007) Volcano deformation: geodetic monitoring techniques. Springer-Verlag, Berlin, p 442

    Google Scholar 

  • Dzurisin D, Anderson LA, Eaton GP, Koyanagi RY, Lipman PW, Lockwood JP, Okamura RT, Puniwai GS, Sako MK, Yamashita KM (1980) Geophysical observations of Kilauea volcano, Hawaii; 2. Constraints on the magma supply during November 1975–September 1977. J Volcanol Geoth Res 7:241–269. https://doi.org/10.1016/0377-0273(80)90032-3

    Article  Google Scholar 

  • Dzurisin D, Westphal JA, Johnson DJ (1983) Eruption prediction aided by electronic tiltmeter data at Mount St. Helens. Science 221:1381–1383. https://doi.org/10.1126/science.221.4618.1381

    Article  Google Scholar 

  • Eaton JP (1959) A portable water-tube tiltmeter. Bull Seismol Soc Am 49:301–316. https://doi.org/10.1785/BSSA0490040301

    Article  Google Scholar 

  • Ebmeier SK, Biggs J, Mather TA, Amelung F (2013) On the lack of InSAR observations of magmatic deformation at Central American volcanoes. J Geophys Res 118:2571–2585. https://doi.org/10.1002/jgrb.50195

    Article  Google Scholar 

  • Ebmeier SK, Andrews BJ, Araya MC, Arnold DWD, Biggs J, Cooper C, Cottrell E, Furtney M, Hickey J, Jay J, Lloyd R, Parker AL, Pritchard ME, Robertson E, Venzke E, Williamson JL (2018) Synthesis of global satellite observations of magmatic and volcanic deformation: Implications for volcano monitoring & the lateral extent of magmatic domains. J Appl Volcanol 7. https://doi.org/10.1186/s13617-018-0071-3

  • Einarsson P (2021) Eysteinn Tryggvason - minning. Jökull 71:139–147. https://doi.org/10.33799/jokull2021.71

  • Fernández J, Pepe A, Poland MP, Sigmundsson F (2017) Volcano geodesy: Recent developments and future challenges. J Volcanol Geoth Res 344:1–12. https://doi.org/10.1016/j.jvolgeores.2017.08.006

    Article  Google Scholar 

  • Gaddes ME, Hooper A, Bagnardi M (2019) Using machine learning to automatically detect volcanic unrest in a time series of interferograms. J Geophys Res 124:12,304-12,322. https://doi.org/10.1029/2019JB017519

    Article  Google Scholar 

  • Gaddes ME, Hooper A, Bagnardi M, Inman H, Albino F (2018) Blind signal separation methods for InSAR: the potential to automatically detect and monitor signals of volcanic deformation. J Geophys Res 123:10,226-10,251. https://doi.org/10.1029/2018JB016210

    Article  Google Scholar 

  • Gambino S (2002) Coseismic and aseismic tilt variation on Mount Etna. Pure Appl Geophys 159:2751–2762. https://doi.org/10.1007/s00024-002-8757-0

    Article  Google Scholar 

  • Gambino S, Cammarata L (2017) Tilt measurements on volcanoes: more than a hundred years of recordings. Ital J Geosci 136:275–295. https://doi.org/10.3301/IJG.2017.07

    Article  Google Scholar 

  • Gómez Martínez DM, López Vélez CM, Monsalve Bustamante ML, Agudelo Restrepo A, Cortés Jiménez GP, Calvache Velasco ML (2022) Active volcanism in Colombia and the role of the Servicio Geológico Colombiano. Volcanica 4(2):113–139. https://doi.org/10.30909/vol.04.S1.113139

  • Gottsmann J, Folch A, Rymer H (2006) Unrest at Campi Flegrei: a contribution to the magmatic versus hydrothermal debate from inverse and finite element modeling. J Geophys Res 111. https://doi.org/10.1029/2005JB003745

  • Grapenthin R, Freymueller JT, Kaufman AM (2013) Geodetic observations during the 2009 eruption of Redoubt Volcano, Alaska. J Volcanol Geoth Res 259:115–132. https://doi.org/10.1016/j.jvolgeores.2012.04.021

    Article  Google Scholar 

  • Hamling IJ, Wright TJ, Calais E, Bennati L, Lewi E (2010) Stress transfer between thirteen successive dyke intrusions in Ethiopia. Nat Geosci 3(10):713–717. https://doi.org/10.1038/ngeo967

    Article  Google Scholar 

  • Hayford JF, Baldwin AL (1908) Geodetic measurements of earth movements. In: Lawson AC (ed) The California earthquake of April 18, 1906, Report of the State Earthquake Investigation Commission (Volume 1). Carnegie Institute of Washington, Washington, D.C., pp 114–145

    Google Scholar 

  • Herd RA, Edmonds M, Bass VA (2005) Catastrophic lava dome failure at Soufrière Hills Volcano, Montserrat, 12–13 July 2003. J Volcanol Geoth Res 148:234–252. https://doi.org/10.1016/j.jvolgeores.2005.05.003

    Article  Google Scholar 

  • Iannaccone G, Guardato S, Donnarumma GP, De Martino P, Dolce M, Macedonio G, Chierici F, Beranzoli L (2018) Measurement of seafloor deformation in the marine sector of the Campi Flegrei caldera (Italy). J Geophys Res 123:66–83. https://doi.org/10.1002/2017JB014852

    Article  Google Scholar 

  • Iida K, Hayakawa M, Katayose K (1952) Gravity survey of Mihara Volcano Ooshima Island and changes in gravity caused by the eruption. Geological Survey of Japan 152, 28 p

  • Issel A (1883) Le oscillazioni lente del suolo, o bradisismi. Tipografia del R. Istituto de Sordo-muti, Genova, 422 p

  • Jaggar T, Finch R (1929) Tilt records for thirteen years at the Hawaiian Volcano Observatory. Bull Seismol Soc Am 19:38–51. https://doi.org/10.1785/BSSA0190010038

    Article  Google Scholar 

  • Johnson DJ, Sigmundsson F, Delaney PT (2000) Comment on “Volume of magma accumulation or withdrawal estimated from surface uplift or subsidence with application to the 1960 collapse of Kilauea volcano” by P.T. Delaney and D. F McTigue. Bull Volcanol 61:491–493. https://doi.org/10.1007/s004450050006

    Article  Google Scholar 

  • Johnson DJ, Eggers AA, Bagnardi M, Battaglia M, Poland MP, Miklius A (2010) Shallow magma accumulation at Kīlauea Volcano, Hawai‘i, revealed by microgravity surveys. Geology 38:1139–1142. https://doi.org/10.1130/G31323.1

    Article  Google Scholar 

  • Johnston MJS, Hill DP, Linde AT, Langbein J, Bilham R (1995) Transient deformation during triggered seismicity from the 28 June 1992 Mw = 7.3 Landers earthquake at Long Valley volcanic caldera, California. Bull Seismol Soc Am 85:787–795. https://doi.org/10.1785/BSSA0850030787

    Article  Google Scholar 

  • Kauahikaua J, Poland M (2012) One hundred years of volcano monitoring in Hawaii. Eos 93:29–30. https://doi.org/10.1029/2012EO030001

    Article  Google Scholar 

  • Koymans MR, de Zeeuw‐van Dalfsen E, Evers LG, Poland MP (2022) Microgravity change during the 2008 – 2018 Kı̄lauea summit eruption: nearly a decade of subsurface mass accumulation. J Geophysl Res 127(9):e2022JB024739. https://doi.org/10.1029/2022JB024739

  • Kubanek J, Poland MP, Biggs J (2021) Applications of Bistatic Radar to Volcano topography—a review of ten years of TanDEM-X. IEEE J Sel Top Appl Earth Observ Remote Sens 14:3282–3302. https://doi.org/10.1109/JSTARS.2021.3055653

    Article  Google Scholar 

  • Kumago H, Ohiminato T, Nakano M, Ooi M, Kubo A, Inoue H, Oikawa J (2001) Very-long-period seismic signals and caldera formation at Miyake Island, Japan. Science 293(5530):687–690. https://doi.org/10.1126/science.1062136

    Article  Google Scholar 

  • LaHusen RG, Swinford KJ, Logan M, Lisowski M (2008) Instrumentation in remote and dangerous settings; Examples using data from GPS “spider” deployments during the 2004–2005 eruption of Mount St. Helens, Washington. In: Sherrod DR, Scott WE, Stauffer PH (eds) A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004–2006. U.S. Geological Survey Professional Paper 1750:335–345

  • Langbein JO (2003) Deformation of the Long Valley Caldera, California: Inferences from measurements from 1988 to 2001. J Geoth Volcanol Res 127:247–267. https://doi.org/10.1016/S0377-0273(03)00172-0

    Article  Google Scholar 

  • Linde AT, Agustsson K, Sacks IS, Stefansson R (1993) Mechanism of the 1991 eruptions of Hekla from continuous borehole strain monitoring. Nature 365:737–740. https://doi.org/10.1038/365737a0

    Article  Google Scholar 

  • Lipman P, Moore J, Swanson D (1981) Bulging of the north flank before the May 18 eruption—geodetic data. In: Lipman P, Mullineaux D (eds) The 1980 Eruptions of Mount St. Helens. U.S. Geological Survey Professional Paper 1250:143–155

  • Lu Z, Dzurisin D (2014) InSAR Imaging of Aleutian Volcanoes: Monitoring a Volcanic Arc from Space. Springer-Verlag, Berlin. 390 p. https://doi.org/10.1007/978-3-642-00348-6

  • Lundgren PR, Bagnardi M, Dietterich H (2019) Topographic Changes During the 2018 Kīlauea Eruption from Single-pass Airborne InSAR. Geophys Res Lett 46(16):9554–9562. https://doi.org/10.1029/2019GL083501

    Article  Google Scholar 

  • Luttrell K, Mencin D, Francis O, Hurwitz S (2013) Constraints on the upper crustal magma reservoir beneath Yellowstone Caldera inferred from lake-seiche induced strain observations. Geophys Res Lett 40:501–506. https://doi.org/10.1002/grl.50155

    Article  Google Scholar 

  • Major JJ, Dzurisin D, Schilling SP, Poland MP (2009) Monitoring lava-dome growth during the 2004–2008 Mount St. Helens, Washington, eruption using oblique terrestrial photography. Earth Planet Sci Lett 286:243–254. https://doi.org/10.1016/j.epsl.2009.06.034

    Article  Google Scholar 

  • Massonnet D, Briole P, Arnaud A (1995) Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 375(6532):567–570. https://doi.org/10.1038/375567a0

    Article  Google Scholar 

  • Matoza RS, Roman DC (2022) One hundred years of advances in volcano seismology and acoustics. Bull Volcanol 84:86. https://doi.org/10.1007/s00445-022-01586-0

  • Mattia M, Rossi M, Guglielmino F, Aloisi M, Bock Y (2004) The shallow plumbing system of Stromboli Island as imaged from 1 Hz instantaneous GPS positions. Geophys Res Lett 31. https://doi.org/10.1029/2004GL021281

  • Mattioli GS, Voight B, Linde AT, Sacks IS, Watts P, Widiwijayanti C, Young SR, Hidayat D, Wlsworth D, Malin PE, Shalev E, Van Boskirk E, Johnston W, Sparks RSJ, Neuberg J, Bass V, Dunkley P, Herd R, Syers T, Williams P, Williams D (2007) Unique and remarkable dilatometer measurements of pyroclastic flow-generated tsunamis. Geology 35:25–28. https://doi.org/10.1130/G22931A.1

    Article  Google Scholar 

  • McKee CO, Lowenstien PL, De Saint OP, Talai B, Itikarai I, Mori JJ (1984) Seismic and ground deformation crises and Rabaul Caldera: prelude to an eruption? Bull Volcanol 47(2):397–411. https://doi.org/10.1007/BF01961569

    Article  Google Scholar 

  • Ménoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B (2018) Gravity measurements below 10–9 g with a transportable absolute quantum gravimeter. Sci Rep 8:12300. https://doi.org/10.1038/s41598-018-30608-1

    Article  Google Scholar 

  • Michon L, Staudacher T, Ferrazzini V, Bachèlery P, Marti J (2007) April 2007 collapse of Piton de la Fournaise: a new example of caldera formation. Geophys Res Lett 34(21). https://doi.org/10.1029/2007GL031248

  • Middlemiss RP, Samarelli A, Paul DJ, Hough J, Rowan S, Hammond GD (2016) Measurement of the Earth tides with a MEMS gravimeter. Nature 531:614–617. https://doi.org/10.1038/nature17397

    Article  Google Scholar 

  • Middlemiss RP, Bramsiepe SG, Douglas R, Hough J, Paul DJ, Rowan S, Hammond GD (2017) Field tests of a portable MEMS gravimeter. Sensors (Basel) 17:2571. https://doi.org/10.3390/s17112571

    Article  Google Scholar 

  • Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull Earthq Res Inst 36:99–134

    Google Scholar 

  • Moore J, Albee W, (1981) Topographic and structural changes, March–July 1980—photogrammetric data. In: Lipman P, Mullineaux D (eds) The 1980 Eruptions of Mount St. Helens,. U.S. Geological Survey Professional Paper 1250:123–134

  • Mora MM, Lesage P, Albino F, Soto G, Alvarado GE (2013) Continuous subsidence associated with the long-lasting eruption of Arenal Volcano (Costa Rica) observed by dry-tilt stations. Chapter 3 of Rose WI, Palma JL, Delgado Granados H, Varley N (eds) Understanding Open-Vent Volcanism and Related Hazards, Geological Society of America Special Paper 498:45–56. https://doi.org/10.1130/2013.2498(03)

  • Neal CA, Brantley SR, Antolik L, Babb J, Burgess M, Calles K, Cappos M, Chang JC, Conway S, Desmither L, Dotray P, Elias T, Fukunaga P, Fuke S, Johanson IA, Kamibayashi K, Kauahikaua J, Lee RL, Pekalib S, Miklius A, Million W, Moniz CJ, Nadeau PA, Okubo P, Parcheta C, Patrick MR, Shiro B, Swanson DA, Tollett W, Trusdell F, Younger EF, Zoeller MH, Montgomery-Brown EK, Anderson KR, Poland MP, Ball J, Bard J, Coombs M, Dietterich HR, Kern C, Thelen WA, Cervelli PF, Orr T, Houghton BF, Gansecki C, Hazlett R, Lundgren P, Diefenbach AK, Lerner AH, Waite G, Kelly P, Clor L, Werner C, Mulliken K, Fisher G (2019) The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science 363(6425):367–374. https://doi.org/10.1126/science.aav7046

    Article  Google Scholar 

  • Newhall CG, Dzurisin D (1988) Historical unrest at large calderas of the world. U.S. Geological Survey Bulletin 1855, 1108 p. https://doi.org/10.3133/b1855

  • Odbert HM, Ryan GA, Mattioli GS, Hautmann S, Gottsmann J, Fournier N, Herd RA (2014) Volcano geodesy at the Soufrière Hills Volcano, Montserrat: a review. In: Wadge G, Robertson REA, Voight B (eds) The Eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010, Geological Society, London Memoirs 39, pp. 195–217. https://doi.org/10.1144/M39.11

  • Omori F (1913) The Usu-san eruption and the earthquake and elevation phenomena: II. [Comparison of the bench mark heights in the base district before and after the eruption]. Bull Imper Earthq Investig Comm 5:101–109

    Google Scholar 

  • Omori F (1918) The Sakura-jima eruptions and earthquakes. Bull Imper Earthq Investig Comm 8:1–525

    Google Scholar 

  • Orr TR, Rea JC (2012) Time-lapse camera observations of gas piston activity at Pu‘u ‘Ō‘ō, Kīlauea volcano, Hawai‘i. Bull Volcanol 74(10):2353–2362. https://doi.org/10.1007/s00445-012-0667-0

    Article  Google Scholar 

  • Pelton JR, Smith RB (1979) Recent crustal uplift in Yellowstone National Park. Science 206:1179–1182. https://doi.org/10.1126/science.206.4423.1179

    Article  Google Scholar 

  • Poland MP, Anderson KR (2020) Partly cloudy with a chance of lava flows: forecasting volcanic eruptions in the 21st century. J Geophys Res 125:e2018JB016974. https://doi.org/10.1029/2018JB016974

    Article  Google Scholar 

  • Poland MP, Zebker HA (2022) Volcano geodesy using InSAR in 2020: the past and next decades. Bull Volcanol 84:27. https://doi.org/10.1007/s00445-022-01531-1

    Article  Google Scholar 

  • Poland MP, de Zeeuw-van Dalfsen E (2021) Volcano geodesy: A critical tool for assessing the state of volcanoes and their potential for hazardous eruptive activity. Chapter 3 of Papale P (Ed.) Forecasting and Planning for Volcanic Hazards, Risks, and Disasters, Amsterdam, Elsevier, 75–115. https://doi.org/10.1016/B978-0-12-818082-2.00003-2

  • Poland MP, Carbone D, Patrick MR (2021) Onset and evolution of Kīlauea’s 2018 flank eruption and summit collapse from continuous gravity. Earth Planet Sci Lett 567:117003. https://doi.org/10.1016/j.epsl.2021.117003

    Article  Google Scholar 

  • Poland MP, de Zeeuw-van Dalfsen E, Bagnardi M, Johanson IA (2019) Post-collapse gravity increase at the summit of Kīlauea Volcano, Hawaiʻi. Geophys Res Lett 46:14,430-14,439. https://doi.org/10.1029/2019GL084901

    Article  Google Scholar 

  • Poland M, Hamburger M, Newman A (2006) The changing shapes of active volcanoes: history, evolution, and future challenges for volcano geodesy. J Volcanol Geoth Res 150:1–13. https://doi.org/10.1016/j.jvolgeores.2005.11.005

    Article  Google Scholar 

  • Pollard DD, Delaney PT, Duffield WA, Endo ET, Okamura AT (1983) Surface deformation in volcanic rift zones. Tectonophysics 94:541–584. https://doi.org/10.1016/0040-1951(83)90034-3

    Article  Google Scholar 

  • Pritchard ME, Simons M (2002) A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes. Nature 418:167–171. https://doi.org/10.1038/nature00872

    Article  Google Scholar 

  • Pritchard ME, Simons M (2004) An InSAR-based survey of volcanic deformation in the Southern Andes. Geophys Res Lett 31. https://doi.org/10.1029/2004GL020545

  • Richter N, Poland MP, Lundgren PR (2013) TerraSAR-X interferometry reveals small-scale deformation associated with the summit eruption of Kīlauea Volcano, Hawai‘i. Geophys Res Lett 40:1279–1283. https://doi.org/10.1002/grl.50286

    Article  Google Scholar 

  • Rivalta E, Segall P (2008) Magma compressibility and the missing source for some dike intrusions. Geophys Res Lett 35. https://doi.org/10.1029/2007GL032521

  • Rosen PA, Hensley S, Zebker HA, Webb FH, Fielding EJ (1996) Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry. J Geophys Res 101:23,109–123,125. https://doi.org/10.1029/96JE01459

  • Salzer JT, Nikkhoo M, Walter TR, Sudhaus H, Reyes-Dávila G, Bretón M, Arambula R (2014) Satellite radar data reveal short-term pre-explosive displacements and a complex conduit system at Volcán de Colima, Mexico. Front Earth Sci 2:12. https://doi.org/10.3389/feart.2014.00012

    Article  Google Scholar 

  • Savage JC (1988) Principal component analysis of geodetically measured deformation in Long Valley caldera, eastern California, 1983–1987. J Geophys Res 93(B11):13,297-13,305. https://doi.org/10.1029/JB093iB11p13297

    Article  Google Scholar 

  • Savage JC, Clark MM (1982) Magmatic resurgence in Long Valley caldera, California: Possible cause of the 1980 Mammoth Lakes earthquakes. Science 217:531–533. https://doi.org/10.1126/science.217.4559.531

    Article  Google Scholar 

  • Savage JC, Cockerham RS, Estrem JE, Moore LR (1987) Deformation near the Long Valley caldera, eastern California, 1982–1986. J Geophys Res 92(B3):2,721-2,746. https://doi.org/10.1029/JB092iB03p02721

    Article  Google Scholar 

  • Segall P (2019) Magma chambers: what we can, and cannot, learn from volcano geodesy. Philos Trans A Math Phys Eng Sci 377:20180158. https://doi.org/10.1098/rsta.2018.0158

    Article  Google Scholar 

  • Segall P, Anderson K (2021) Repeating caldera collapse events constrain fault friction at the kilometer scale. Proc Natl Acad Sci 118(30):e2101469118. https://doi.org/10.1073/pnas.2101469118

    Article  Google Scholar 

  • Segall P, Anderson KR, Johanson I, Miklius A (2019) Mechanics of inflationary deformation during caldera collapse: Evidence from the 2018 Kilauea eruption. Geophys Res Lett 46(21):11,782-11,789. https://doi.org/10.1029/2019GL084689

    Article  Google Scholar 

  • Segall P, Anderson KR, Pulvirenti F, Wang T, Johanson I (2020) Caldera Collapse Geometry Revealed by Near-Field GPS Displacements at Kīlauea Volcano in 2018. Geophys Res Lett 47(15):e2020GL088867. https://doi.org/10.1029/2020GL088867

  • Sigmundsson F, Hooper A, Hreinsdóttir S, Vogfjörd KS, Ófeigsson BG, Heimisson ER, Dumont S, Parks M, Spaans K, Gudmundsson GB, Drouin V, Árnadóttir T, Jónsdóttir K, Gudmundsson MT, Högnadóttir T, Fridriksdóttir HM, Hensch M, Einarsson P, Magnússon E, Samsonov S, Brandsdóttir B, White RS, Ágústsdóttir T, Greenfield T, Green RG, Hjartardóttir ÁR, Pedersen R, Bennett RA, Geirsson H, La Femina PC, Björnsson H, Pálsson F, Sturkell E, Bean CJ, Möllhoff M, Braiden AK, Eibl EPS (2015) Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature 517(7533):191–195. https://doi.org/10.1038/nature14111

    Article  Google Scholar 

  • Sigurdsson O (1980) Surface deformation of the Krafla fissure swarm in two rifting events. J Geophys 47:154–159. https://geophysicsjournal.com/article/83

  • Sinton J, Bergmanis E, Rubin K, Batiza R, Gregg TK, Grönvold K, Macdonald KC, White SM (2002) Volcanic eruptions on mid-ocean ridges: New evidence from the superfast spreading East Pacific Rise, 17–19 S. J Geophys Res 107:ECV 3–1–ECV 3–20. https://doi.org/10.1029/2000JB000090

  • Sturkell E, Einarsson P, Sigmundsson F, Geirsson H, Ólafsson H, Pedersen R, de Zeeuw-van Dalfsen E, Linde AT, Sacks SI, Stefánsson R (2006) Volcano geodesy and magma dynamics in Iceland. J Volcanol Geoth Res 150:14–34. https://doi.org/10.1016/j.jvolgeores.2005.07.010

    Article  Google Scholar 

  • Swanson DA, Casadevall TJ, Dzurisin D, Malone SD, Newhall CG, Weaver CS (1983) Predicting eruptions at Mount St. Helens, June 1980 through December 1982. Science 221:1369–1376. https://doi.org/10.1126/science.221.4618.1369

    Article  Google Scholar 

  • Tilling RI, Kauahikaua JP, Brantley SR, Neal CA (2014) The Hawaiian Volcano Observatory—A natural laboratory for studying basaltic volcanism, Chapter 1 of Poland MP, Takahashi TJ, Landowski CM (eds.), Characteristics of Hawaiian Volcanoes, U.S. Geological Survey Professional Paper 1801:1–64. https://doi.org/10.3133/pp18011

  • Tryggvason E (1980) Subsidence events in the Krafla area, north Iceland, 1975–1979. J Geophys 47:141–153. https://geophysicsjournal.com/article/76

  • Tryggvason E (1994a) Observed ground deformation at Hekla, Iceland prior to and during the eruptions of 1970, 1980–1981 and 1991. J Volcanol Geoth Res 61:281–291. https://doi.org/10.1016/0377-0273(94)90009-4

    Article  Google Scholar 

  • Tryggvason E (1994b) Surface deformation at the Krafla volcano, North Iceland, 1982–1992. Bull Volcanol 56:98–107. https://doi.org/10.1007/BF00304105

    Article  Google Scholar 

  • Ukawa M, Fujita E, Ueda H, Kumagai T, Nakajima H, Morita H (2006) Long-term geodetic measurements of large scale deformation at Iwo-jima caldera, Japan. J Volcanol Geoth Res 150:98–118. https://doi.org/10.1016/j.jvolgeores.2005.07.008

    Article  Google Scholar 

  • Utsu T, Ogata Y, Matsu'ura RS (1995) The centenary of the Omori formula for a decay law of aftershock activity. J Phys Earth 43:1–33. https://doi.org/10.4294/jpe1952.43.1

  • Voight B, Hidayat D, Sacks S, Linde A, Chardot L, Clarke A, Elsworth D, Foroozan R, Malin P, Mattioli G, McWhorter N, Shalev E, Sparks RSJ, Widiwijayanti C, Young SR (2010) Unique strainmeter observations of Vulcanian explosions, Soufrière Hills Volcano, Montserrat, July 2003. Geophys Res Lett 37. https://doi.org/10.1029/2010GL042551

  • Voight B, Hoblitt RP, Clarke AB, Lockhart AB, Miller AD, Lynch L, McMahon J (1998) Remarkable cyclic ground deformation monitored in real-time on Montserrat, and its use in eruption forcasting. Geophys Res Lett 25:34,05-34,08. https://doi.org/10.1029/98GL01160

    Article  Google Scholar 

  • Wadge G, Horsfall JAC, Brander JL (1975) Tilt and strain monitoring of the 1974 eruption of Mount Etna. Nature 254(5495):21–23. https://doi.org/10.1038/254021a0

    Article  Google Scholar 

  • Wang D, Zhao B, Liu D, Yu J, Guo F (2021a) Geodetic monitoring of the Changbaishan volcano activity and its relationship with earthquakes, 1999–2017. Geod Geodyn 12(4):239–248. https://doi.org/10.1016/j.geog.2021.03.005

    Article  Google Scholar 

  • Wang T, Zheng Y, Pulvirenti F, Segall P (2021b) Post-2018 caldera collapse re-inflation uniquely constrains Klauea’s magmatic system. J Geophys Res 126(6):e2021bJB021803. https://doi.org/10.1029/2021JB021803

  • Wang TA, Coppess KR, Segall P, Dunham EM, Ellsworth W (2022) Physics-based model reconciles caldera collapse induced static and dynamic ground motion: application to Kīlauea 2018. Geophys Res Lett 49(8):e2021GL097440. https://doi.org/10.1029/2021GL097440

  • Wilson R (1935) Ground surface movements at Kilauea volcano, Hawaii. University of Hawaii Research Publications 108, 56 p

  • Wong Y-Q, Segall P (2020) Joint inversions of ground deformation, extrusion flux and gas emissions using physics-based models for the Mount St. Helens 2004–2008 eruption. Geochem Geophys Geosyst 12:e2020GC009343. https://doi.org/10.1029/2020GC009343

  • Wong Y-Q, Segall P, Bradley A, Anderson K (2017) Constraining the magmatic system at Mount St. Helens (2004–2008) using Bayesian inversion with physics-based models including gas escape and crystallization. J Geophys Res 122:7,789–7,812. https://doi.org/10.1002/2017JB014343

  • Wright TJ, Ebinger C, Biggs J, Ayele A, Yirgu G, Keir D, Stork A (2006) Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature 442:291–294. https://doi.org/10.1038/nature04978

    Article  Google Scholar 

  • Wright TJ, Sigmundsson F, Pagli C, Belachew M, Hamling IJ, Brandsdóttir B, Keir D, Pedersen R, Ayele A, Ebinger C, Einarsson P, Lewi E, Calais E (2012) Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nat Geosci 5:242–250. https://doi.org/10.1038/ngeo1428

    Article  Google Scholar 

  • Xie S, Law J, Russell R, Dixon TH, Lembke C, Malservisi R, Rodgers M, Iannaccone G, Guardato S, Naar DF, Calore D, Fraticelli N, Brizzolara J, Gray JW, Hommeyer M, Chen J (2019) Seafloor geodesy in shallow water with GPS on an anchored spar buoy. J Geophys Res 124:12,116-12,1140. https://doi.org/10.1029/2019JB018242

    Article  Google Scholar 

  • Yamakawa N (1955) On the strain produced on a semiinfinite elastic solid by an interior source of stress. J Atmos Ocean Technol 8:84–98

    Google Scholar 

  • Yang X-M, Davis PM, Dieterich JH (1988) Deformation from inflation of a dipping finite prolate spheroid in an elastic half space as a model for volcanic stressing. J Geophys Res 93:4249–4257. https://doi.org/10.1029/JB093iB05p04249

    Article  Google Scholar 

Download references

Acknowledgements

Our thanks go to Páll Einarsson, Don Swanson, and Dan Dzurisin, who provided thoughtful and comprehensive reviews (and in many cases personal accounts of the people, places, and things we discussed in this contribution). Prospero De Martino provided data from Campi Flegrei used to construct Figure 9. Erik Sturkell provided information used in Figures 8b and 12. We are grateful to Patrick Allard and Roberto Sulpizio for inviting us to give a presentation at the 2019 IUGG General Assembly in Montreal, Canada, from which this history was derived. TerraSAR-X data shown in Figure 16 were made available via the CEOS Volcano Demonstrator, © DLR 2020. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Poland.

Additional information

Editorial responsibility: R. Sulpizio

This paper constitutes part of a topical collection: IAVCEI 1919-2019: One hundred years of international outreach and scientific advances in Volcanology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poland, M.P., de Zeeuw-van Dalfsen, E. The centenary of IAVCEI 1919–2019 and beyond: The people, places, and things of volcano geodesy. Bull Volcanol 84, 90 (2022). https://doi.org/10.1007/s00445-022-01598-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-022-01598-w

Keywords

Navigation