Skip to main content
Log in

Magnetotelluric imaging of the resurgent caldera on the island of Ischia (southern Italy): inferences for its structure and activity

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The island of Ischia (located in the Bay of Naples, Italy) represents a peculiar case of a well-exposed caldera that has experienced a large (>800 m) and rapid resurgence, accompanied by volcanic activity. What drives the resurgence of calderas is a crucial issue to investigate, because this process is associated with potential eruptions and high risk to people living within and around such large active volcanic systems. To improve the knowledge of volcano-tectonic processes affecting the caldera of Ischia, electromagnetic imaging of the structures associated with its resurgence was performed and integrated with available geological information. A magnetotelluric (MT) survey of the island was carried out along two main profiles through the central-western sector, providing an electrical resistivity map to a depth of 3 km. These resistivity cross sections allowed us to identify the presence of a very shallow magmatic intrusion, possibly a laccolith, at a depth of about 1 km, which was responsible for both the resurgence and the volcanic activity. Furthermore, the tectonic structures bordering the resurgent area and the occurrence of a large thermal anomaly in the western sector of the caldera also provided a signature in the resistivity cross sections, with the magma intrusion producing advection of hot fluids with high geothermal gradients (>150 °C km−1) in the southern and western sectors. All of these data are fundamental for the assessment of the island’s volcano-tectonic dynamics and their associated hazards. The structure and activity of the island have been controlled by the process of resurgence associated with the arrival of new magma and the progressive intrusion of a laccolith at a shallow depth. The reactivation of such a shallow system may imply imminent eruption which would pose a major volcanic hazard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdul Azeez K, Harinarayana T (2007) Magnetotelluric evidence of potential geothermal resource in Puga, Ladakh, NW Himalaya. Curr Sci 93:323–329

    Google Scholar 

  • Acocella V, Funiciello R (1999) The interaction between regional and local tectonics during resurgent doming: the case of the island of Ischia, Italy. J Volcanol Geotherm Res 88(1):109–123

    Article  Google Scholar 

  • Acocella V, Cifelli F, Funiciello R (2001) The control of overburden thickness on resurgent domes: insights from analogue models. J Volcanol Geotherm Res 111(1):137–153

    Article  Google Scholar 

  • AGIP (1987) Geologia e geofisica del sistema geotermico dei Campi Flegrei, Technical report. Settore Esplor e Ric Geoterm-Metodol per l’Esplor Geotermica, San Donato Milanese Italy, pp 1–23

    Google Scholar 

  • Arango C, Marcuello A, Ledo J, Queralt P (2009) 3D magnetotelluric characterization of the geothermal anomaly in the Llucmajor aquifer system (Majorca, Spain). J Appl Geophys 68(4):479–488

    Article  Google Scholar 

  • Bai D, Meju MA, Liao Z (2001) Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, southern China. Geophys J Int 147(3):677–687

    Article  Google Scholar 

  • Barra D, Cinque A, Italiano A, Scorziello R (1992) Il Pleistocene superiore marino di Ischia: paleoecologia e rapporti con l’evoluzione tettonica recente. Studi Geol Camerti 1(special issue):231–243 (in italian)

    Google Scholar 

  • Berdichevsky MN, Dmitriev VI (2010) Models and methods of magnetotellurics. Springer Science & Business Media, Berlin

    Google Scholar 

  • Booker JR (2014) The magnetotelluric phase tensor: a critical review. Surv Geophys 35(1):7–40

    Article  Google Scholar 

  • Brace WF (1980) Permeability of crystalline and argillaceous rocks. Int J Rock Mech Min Sci Geomech Abstr 17(5):241–251 Pergamon

    Article  Google Scholar 

  • Brasse H, Soyer W (2001) A magnetotelluric study in the southern Chilean Andes. Geophys Res Lett 28(19):3757–3760

    Article  Google Scholar 

  • Caldwell T, Grant H, Bibby M, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158:457–469

    Article  Google Scholar 

  • CARG project (2011) Carta Geologica dell’Isola d’Ischia. Regione Campania

  • Carlino S (2012) The process of resurgence for Ischia Island (southern Italy) since 55 ka: the laccolith model and implications for eruption forecasting. Bull Volcanol 74(5):947–961

    Article  Google Scholar 

  • Carlino S, Somma R (2010) Eruptive versus non-eruptive behaviour of large calderas: the example of Campi Flegrei caldera (southern Italy). Bull Volcanol 72(7):871–886

    Article  Google Scholar 

  • Carlino S, Cubellis E, Luongo G, Obrizzo F (2006) On the mechanics of caldera resurgence of Ischia Island (southern Italy). Geol Soc Lond, Spec Publ 269(1):181–193

    Article  Google Scholar 

  • Carlino S, Somma R, Troise C, De Natale G (2012) The geothermal exploration of Campanian volcanoes: historical review and future development. Renew Sust Energ Rev 16(1):1004–1030

    Article  Google Scholar 

  • Carlino S, Somma R, Troiano A, Di Giuseppe MG, Troise C, De Natale G (2014) The geothermal system of Ischia Island (southern Italy): critical review and sustainability analysis of geothermal resource for electricity generation. Renew Energy 62:177–196

    Article  Google Scholar 

  • Carlino S, Somma R, Troiano A, Di Giuseppe MG, Troise C, De Natale G (2015) Geothermal investigations of active volcanoes: the example of Ischia Island and Campi Flegrei caldera (southern Italy). In: Engineering Geology for Society and Territory, vol 1. Springer, Champions, pp 369–372

  • Carrara E, Pinna E, Rapolla A (1983) Indagini geofisiche nelle aree vulcaniche italiane di interesse geotermico. Atti Accademia Pontaniana, Nuova Serie, XXXI, pp 299–314

  • Celico P, Stanzione D, Esposito L, Formica F, Piscopo V, De Rosa BM (1999) La complessità idrogeologica di un’area vulcanica attiva; l’Isola d’Ischia (Napoli, Campania). Boll Soc Geol Ital 118(3):485–504

    Google Scholar 

  • Chang WL, Smith RB, Farrell J, Puskas CM (2010) An extraordinary episode of Yellowstone caldera uplift, 2004–2010, from GPS and InSAR observations. Geophys Res Lett 37(23). https://doi.org/10.1029/2010GL045451

  • Chiodini G, Avino R, Brombach T, Caliro S, Cardellini C, de Vita S et al (2004) Fumarolic and diffuse soil degassing west of Mount Epomeo, Ischia, Italy. J Volcanol Geotherm Res 133(1):291–309

    Article  Google Scholar 

  • Civetta L, Gallo G, Orsi G (1991) Sr-and Nd-isotope and trace-element constraints on the chemical evolution of the magmatic system of Ischia (Italy) in the last 55 ka. J Volcanol Geotherm Res 46(3):213–230

    Article  Google Scholar 

  • Cooper KM, Kent AJ (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature 506(7489):480

    Article  Google Scholar 

  • De Martino P, Tammaro U, Obrizzo F, Sepe V, Brandi G, D’Alessandro A, Dolce M, Pingue F (2011) La Rete GPS dell’isola di Ischia: deformazioni del suolo in un’area vulcanica attiva (1998–2010). Quaderni di Geofisica, n. 92

  • de Vita S, Sansivero F, Orsi G, Marotta E, Piochi M (2010) Volcanological and structural evolution of the Ischia resurgent caldera (Italy) over the past 10 ky. Geol Soc Am Spec Pap 464:193–239

    Google Scholar 

  • Di Giuseppe MG, Troiano A, Fedele A, Caputo T, Patella D, Troise C, De Natale G (2015) Electrical resistivity tomography imaging of the near-surface structure of the Solfatara crater, Campi Flegrei (Naples, Italy). Bull Volcanol 77(4):27

    Article  Google Scholar 

  • Di Giuseppe MG, Troiano A, Patella D (2017a) Separation of plain wave and near field contributions in magnetotelluric time series: a useful criterion emerged during the Campi Flegrei (Italy) prospecting. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2017.03.019

  • Di Giuseppe MG, Troiano A, Di Vito MA, Somma R, Matano F (2017b) Definition of small-scale volcanic structures by electrical resistivity tomography: the Trentaremi cone, an example from the Campi Flegrei caldera (Italy). Ann Geophys 60(5):0552

    Google Scholar 

  • Di Giuseppe M G, Troiano A, Patella D, Piochi M, Carlino S (2017c) A geophysical k-means cluster analysis of the Solfatara-Pisciarelli volcano-geothermal system, Campi Flegrei (Naples, Italy). J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2017.06.001

  • Di Napoli R, Aiuppa A, Bellomo S, Brusca L, D’Alessandro W, Gagliano Candela E, Longo M, Pecoraino G, Valenza M (2009) A model for Ischia hydrothermal system: evidences from the chemistry of thermal groundwaters. J Volcanol Geotherm Res 186(3):133–159

    Article  Google Scholar 

  • Di Napoli R, Martorana R, Orsi G, Aiuppa A, Camarda M, De Gregorio S, Gagliano Candela E, Luzio D, Messina N, Pecoraino G, Bitetto M, de Vita S, Valenza M (2011) The structure of a hydrothermal system from an integrated geochemical, geophysical, and geological approach: the Ischia Island case study. Geochem Geophys Geosyst 12(7). https://doi.org/10.1029/2010GC003476

  • Egbert GD, Booker JR (1986) Robust estimation of geomagnetic transfer functions. Geophys J Int 87(1):173–194

    Article  Google Scholar 

  • Egbert GD, Livelybrooks DW (1996) Single station magnetotelluric impedance estimation: coherence weighting and the regression M-estimate. Geophysics 61(4):964–970

    Article  Google Scholar 

  • Fridrich CJ, Smith RP, DeWitt E, McKee EH (1991) Structural, eruptive, and intrusive evolution of the Grizzly Peak caldera, Sawatch Range, Colorado. Geol Soc Am Bull 103:1160–1177

    Article  Google Scholar 

  • Fusi N, Tibaldi A, Vezzoli L (1990) Vulcanismo, risorgenza calderica e relazioni con la tettonica regionale nell’isola d’Ischia. Mem Soc Geol Ital 45:971–980

    Google Scholar 

  • Gillot PY, Chiesa S, Pasquare G, Vezzoli L (1982) <33,000-yr K–Ar dating of the volcano–tectonic horst of the Isle of Ischia, Gulf of Naples. Nature 299(5880):242–245

    Article  Google Scholar 

  • Heise W, Caldwell TG, Bibby HM, Bannister SC (2008) Three-dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo volcanic zone, New Zealand. Geophys J Int 173(2):740–750

    Article  Google Scholar 

  • Henry CD, Kunk MJ, Muehlberger WR, Mcintosh WC (1997) Igneous evolution of a complex laccolith–caldera, the Solitario, Trans-Pecos. Texas: implications for calderas and subjacent plutons. GSA Bull 109:1036–1054

    Article  Google Scholar 

  • Hulen JB, Nielson DL, Goff F, Gardner JN, Charles RW (1987) Molybdenum mineralization in an active geothermal system, Valles caldera, New Mexico. Geology 15(8):748–752

    Article  Google Scholar 

  • Hurwitz S, Christiansen LB, Hsieh PA (2007) Hydrothermal fluid flow and deformation in large calderas: inferences from numerical simulations. J Geophys Res Solid Earth 112(B2). https://doi.org/10.1029/2006JB004689

  • Ingebritsen SE, Geiger S, Hurwitz S, Driesner T (2010) Numerical simulation of magmatic hydrothermal systems. Rev Geophys 48(1). https://doi.org/10.1029/2009RG000287

  • Ippolito F, Rapolla A (1982) L’energia geotermica in Campania. Fonti Energetiche Alternative, Fondazione Politecnica per il Mezzogiorno. Franco Angeli (ed) Milan, pp 57–106 (in Italian)

  • Jardani A, Revil A, Bolève A, Dupont JP (2008) 3D inversion of self-potential data used to constrain the pattern of ground water flow in geothermal fields. J Geophys Res 113:B09204. https://doi.org/10.1029/2007JB005302

    Article  Google Scholar 

  • Jellinek AM, DePaolo DJ (2003) A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull Volcanol 65(5):363–381

    Article  Google Scholar 

  • Jones AG (1988) Static shift of magnetotelluric data and its removal in a sedimentary basin environment. Geophysics 53(7):967–978

    Article  Google Scholar 

  • Kawakami Y, Hoshi H, Yamaguchi Y (2007) Mechanism of caldera collapse and resurgence: observations from the northern part of the Kumano acidic rocks, Kii peninsula, southwest Japan. J Volcanol Geotherm Res 167(1):263–281

    Article  Google Scholar 

  • Kelbert A, Meqbel N, Egbert GD, Tandon K (2014) ModEM: a modular system for inversion of electromagnetic geophysical data. Comput Geosci 66:40–53

    Article  Google Scholar 

  • Kennedy B, Stix J (2007) Magmatic processes associated with caldera collapse at Ossipee ring dyke, New Hampshire. Geol Soc Am Bull 119(1–2):3–17

    Article  Google Scholar 

  • Kennedy B, Wilcock J, Stix J (2012) Caldera resurgence during magma replenishment and rejuvenation at Valles and Lake City calderas. Bull Volcanol 74(8):1833–1847

    Article  Google Scholar 

  • Kilburn CR (2003) Multiscale fracturing as a key to forecasting volcanic eruptions. J Volcanol Geotherm Res 125(3):271–289

    Article  Google Scholar 

  • Ledo J, Queralt P, Martí A, Jones AG (2002) Two-dimensional interpretation of three-dimensional magnetotelluric data: an example of limitations and resolution. Geophys J Int 150(1):127–139

    Article  Google Scholar 

  • Marsh BD (1984) On the mechanics of caldera resurgence. J Geophys Res Solid Earth 89(B10):8245–8251

    Article  Google Scholar 

  • McNeice GW, Jones AG (2001) Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics 66:158–173

    Article  Google Scholar 

  • Nunziata C, Rapolla A (1987) A gravity and magnetic study of the volcanic island of Ischia, Naples (Italy). J Volcanol Geotherm Res 31(3–4):333–344

    Article  Google Scholar 

  • Orsi G, Gallo G, Zanchi A (1991) Simple-shearing block resurgence in caldera depressions. A model from Pantelleria and Ischia. J Volcanol Geotherm Res 47:1–11

    Article  Google Scholar 

  • Paige S (1913) The bearing of progressive increase of viscosity during intrusion on the form of laccoliths. J Geol 21(6):541–549

    Article  Google Scholar 

  • Panichi C, Bolognesi L, Ghiara MR, Noto P, Stanzione D (1992) Geothermal assessment of the island of Ischia (southern Italy) from isotopic and chemical composition of the delivered fluids. J Volcanol Geotherm Res 49:329–348

    Article  Google Scholar 

  • Paoletti V, Di Maio R, Cella F, Florio G, Motschka K, Roberti N et al (2009) The ischia volcanic island (southern Italy): inferences from potential field data interpretation. J Volcanol Geotherm Res 179(1):69–86

    Article  Google Scholar 

  • Paoletti V, D’Antonio M, Rapolla A (2013) The structural setting of the Ischia Island (Phlegrean Volcanic District, southern Italy): inferences from geophysics and geochemistry. J Volcanol Geotherm Res 249:155–173

    Article  Google Scholar 

  • Pedersen LB, Engels M (2005) Routine 2D inversion of magnetotelluric data using the determinant of the impedance tensor. Geophysics 70(2):G33–G41

    Article  Google Scholar 

  • Penta F (1954) Ricerche e studi sui fenomeni esalativi-idrotermali e il problema delle forze endogene. Ann Geofis 8:1–94 (in Italian)

    Google Scholar 

  • Penta F (1963) Sulle caratteristiche idrotermologiche dell’isola d’Ischia (Napoli). Rendiconti dell’Accademia dei Lincei 34:1–8 (in Italian)

    Google Scholar 

  • Penta F, Conforto B (1951) Sulle trivellazioni in aree idrotermali per ricerche di vapore. L" ingegnere, Riv. Tecn. Mens. Ass. Naz. Ingg. Archt. It., Milano, 3, 12 (in Italian)

  • Pollard DD, Johnson AM (1973) Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, II: bending and failure of overburden layers and sill formation. Tectonophysics 18(3–4):311–354

    Article  Google Scholar 

  • Pous J, Heise W, Schnegg PA, Muñoz G, Martí J, Soriano C (2002) Magnetotelluric study of the Las Canadas caldera (Tenerife, Canary Islands): structural and hydrogeological implications. Earth Planet Sci Lett 204(1):249–263

    Article  Google Scholar 

  • Ranganayaki RP (1984) An interpretive analysis of magnetotelluric data. Geophysics 49:1730–1748

    Article  Google Scholar 

  • Rao CK, Jones AG, Moorkamp M (2007) The geometry of the Iapetus suture zone in central Ireland deduced from a magnetotelluric study. Phys Earth Planet Inter 161:134–141

    Article  Google Scholar 

  • Revil A, Hermitte D, Spangenberg E, Cochémé JJ (2002) Electrical properties of zeolitized volcaniclastic materials. J Geophys Res 107(B8):2168. https://doi.org/10.1029/2001JB000599

    Article  Google Scholar 

  • Revil A, Johnson TC, Finizola A (2010) Three-dimensional resistivity tomography of Vulcan’s forge, Vulcano Island, southern Italy. Geophys Res Lett 37:L15308. https://doi.org/10.1029/2010GL043983

    Google Scholar 

  • Revil A, Le Breton M, Niu Q, Wallin E, Haskins E, Thomas DM (2017a) Induced polarization of volcanic rocks. 1. Surface versus quadrature conductivity. Geophys J Int 208:826–844. https://doi.org/10.1093/gji/ggw444

    Article  Google Scholar 

  • Revil A, Le Breton M, Niu Q, Wallin E, Haskins E, Thomas DM (2017b) Induced polarization of volcanic rocks. 2. Influence of pore size and permeability. Geophys J Int 208:814–825. https://doi.org/10.1093/gji/ggw382

    Article  Google Scholar 

  • Rinaldi AP, Todesco M, Vandemeulebrouck J, Revil A, Bonafede M (2011) Electrical conductivity, ground displacement, gravity changes, and gas flow at Solfatara crater (Campi Flegrei caldera, Italy): results from numerical modeling. J Volcanol Geotherm Res 207(3–4):93–105

    Article  Google Scholar 

  • Rittmann A (1930) Geologie der Insel Ischia, Z. Vulkanol. Ergbon. (6)1–265

  • Rosenkjaer GK, Gasperikova E, Newman GA, Arnason K, Lindsey NJ (2015) Comparison of 3D MT inversions for geothermal exploration: case studies for Krafla and Hengill geothermal systems in Iceland. Geothermics 57:258–274

    Article  Google Scholar 

  • Saunders SJ (2001) The shallow plumbing system of Rabaul caldera: a partially intruded ring fault? Bull Volcanol 63(6):406–420

    Article  Google Scholar 

  • Sbrana A, Fulignati P, Marianelli P, Boyce AJ, Cecchetti A (2009) Exhumation of an active magmatic–hydrothermal system in a resurgent caldera environment: the example of Ischia (Italy). J Geol Soc 166(6):1061–1073

    Article  Google Scholar 

  • Schön J H (2015) Physical properties of rocks: fundamentals and principles of petrophysics, vol 65. Elsevier

  • Schwalenberg K, Rath V, Haak V (2002) Sensitivity studies applied to a two-dimensional resistivity model from the central Andes. Geophys J Int 150:673–686

    Article  Google Scholar 

  • Sepe V, Atzori S, Ventura G (2007) Subsidence due to crack closure and depressurization of hydrothermal systems: a case study from Mt. Epomeo (Ischia Island, Italy). Terra Nova. https://doi.org/10.1111/j.1365-3121.2006.00727.x

  • Simpson F, Bahr K (2005) Practical magnetotellurics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Siripunvaraporn W, Egbert G, Lenbury Y, Uyeshima M (2005a) Three-dimensional magnetotelluric inversion: data-space method. Phys Earth Planet Inter 150:3–14

    Article  Google Scholar 

  • Siripunvaraporn W, Egbert G, Uyeshima M (2005b) Interpretation of two-dimensional magnetotelluric profile data with three-dimensional inversion: synthetic examples. Geophys J Int 160(3):804–814

    Article  Google Scholar 

  • Smith RL, Bailey RA (1969) Resurgent cauldrons. U.S.G.S., Washington. Geol Soc Am Mem 116:613–662

    Article  Google Scholar 

  • Tait S, Jaupart C, Vergniolle S (1989) Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. Earth Planet Sci Lett 92(1):107–123

    Article  Google Scholar 

  • Tedesco D (1996) Chemical and isotopic investigations of fumarolic gases from Ischia Island (southern Italy); evidences of magmatic and crustal contribution. J Volcanol Geotherm Res 74:233–242

    Article  Google Scholar 

  • Tibaldi A, Vezzoli L (1998) The space problem of caldera resurgence: an example from Ischia Island, Italy. Geol Rundsch 87(1):53–66

    Article  Google Scholar 

  • Tibaldi A, Vezzoli L (2004) A new type of volcano flank failure: the resurgent caldera sector collapse, Ischia, Italy. Geophys Res Lett 31(14). https://doi.org/10.1029/2004GL020419

  • Troiano A, Petrillo Z, Di Giuseppe MG, Balasco M, Diaferia I, Di Fiore B, Siniscalchi A, Patella D (2008) About the shallow resistivity structure of Vesuvius volcano. Ann Geophys 51:179–187

    Google Scholar 

  • Troiano A, Di Giuseppe MG, Petrillo Z, Patella D (2009) Imaging 2D structures by the CSAMT method. Application to the Pantano di S. Gregorio Magno faulted basin (southern Italy). J Geophys Eng 6:120–130

    Article  Google Scholar 

  • Troiano A, Di Giuseppe MG, Petrillo Z, Troise C, De Natale G (2011) Ground deformation at calderas driven by fluid injection: modelling unrest episodes at Campi Flegrei (Italy). Geophys J Int 187(2):833–847

    Article  Google Scholar 

  • Troiano A, Di Giuseppe MG, Patella D, Troise C, De Natale G (2014) Electromagnetic outline of the Solfatara–Pisciarelli hydrothermal system, Campi Flegrei (southern italy). J Volcanol Geotherm Res 277:9–21

    Article  Google Scholar 

  • Vaselli O, Tassi F, Duarte E, Fernández E, Poreda R, Huertas J (2010) Evolution of fluid geochemistry at the Turrialba volcano (Costa Rica) from 1998 to 2008. Bull Volcanol 72(4):397–410

    Article  Google Scholar 

  • Vezzoli L (1988) Island of Ischia. Quaderni de ‘La Ricerca Scientifica’. Consiglio Nazionale Ricerche Roma 114(10):7–126

    Google Scholar 

  • Vezzoli L, Principe C, Malfatti J, Arrighi S, Tanguy JC, Le Goff M (2009) Modes and times of caldera resurgence: the <10 ka evolution of Ischia caldera, Italy, from high-precision archaeomagnetic dating. J Volcanol Geotherm Res 186(3):305–319

    Article  Google Scholar 

  • Vozoff K (1991) The magnetotelluric method. In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, Application, vol 2B. Tulsa, Society of Exploration Geophysicists, pp 641–711

    Chapter  Google Scholar 

  • Weaver JT, Agarwal AK, Lilley FEM (2000) Characterization of the magnetotelluric tensor in terms of its invariants. Geophys J Int 141:321–336

    Article  Google Scholar 

  • Westerman DS, Dini A, Innocenti F, Rocchi S (2004) Rise and fall of a nested Christmas-tree laccolith complex, Elba Island, Italy. Geol Soc Lond, Spec Publ 234(1):195–213

    Article  Google Scholar 

  • Yang B, Egbert GD, Kelbert A, Meqbel NM (2015) Three-dimensional electrical resistivity of the north-central USA from EarthScope long period magnetotelluric data. Earth Planet Sci Lett 422:87–93

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out in the framework of the INGV-DPC research agreement 2012–2021 “All. A.” We are grateful to the Associate Editor, V. Acocella; the Executive Editor, A. Harris; and to the referees, J. Stix and A. Revil, for their helpful comments that have greatly improved the quality of the work. We are also grateful to the Editorial Assistant F. Van Wyk De Vries for manuscript handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Carlino.

Additional information

Editorial responsibility: V. Acocella

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Giuseppe, M.G., Troiano, A. & Carlino, S. Magnetotelluric imaging of the resurgent caldera on the island of Ischia (southern Italy): inferences for its structure and activity. Bull Volcanol 79, 85 (2017). https://doi.org/10.1007/s00445-017-1170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1170-4

Keywords

Navigation