Skip to main content
Log in

Electrical resistivity tomography imaging of the near-surface structure of the Solfatara crater, Campi Flegrei (Naples, Italy)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We describe the results from an electrical resistivity tomography (ERT) survey performed inside the Solfatara crater, located in the central part of the Campi Flegrei (CF) composite caldera. The Solfatara volcano represents the most active zone within the CF area, in terms of hydrothermal manifestations and local seismicity. Eight dipole-dipole ERT lines have been measured with the aim of deducing a 3D resistivity model for the upper 80 m beneath the Solfatara. The results have allowed classification of the shallow structure below the crater into a low-resistivity (LR) class, up to about 4 Ωm, an intermediate resistivity (IR) class, from 5 Ωm up to 50 Ωm, and a high-resistivity (HR) class, from 60 Ωm onward. In order to solve the ambiguities arising in the interpretation of the nature of these bodies, a comparison has been done between the 3D ERT model and the CO2 flux, soil temperature, and gravity maps over the same area. By combining all of these parameters, the whole LR body has been ascribed to a water-dominated geothermal basin and the HR body to a steam/gas-dominated reservoir. Finally, the IR class has been interpreted as a widespread background situation with intermediate character, where volatiles and condensates can coexist in the same volumes at variable percentages, coherently with the resistivity variation within this class. Since fluid dynamics in the Solfatara crater change rapidly, ERT surveys repeated in the future are expected to be of great help in monitoring possible pre-eruptive changes, as well as in better following evolution of the local geothermal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aizebeokhai AP, Olayinka AI, Singh VS (2010) Application of 2D and 3D geoelectrical resistivity imaging for engineering site investigation in a crystalline basement terrain, southwestern Nigeria. Environ Earth Sci 61:1481–1492. doi:10.1007/s12665-010-0464-z

    Article  Google Scholar 

  • Athanasiou EN, Tsourlos PI, Vargemezis GN, Papazachos CB, Tsokas GN (2007) Non-destructive DC resistivity surveying using flat-base electrodes. Near Surf Geophys 5:263–272. doi:10.3997/1873-0604.2007008

    Article  Google Scholar 

  • Bott MHP, Smith RA (1958) The estimation of the limiting depth of gravitating bodies. Geophys Prospect 6:1–10. doi:10.1111/j.1365-2478.1958.tb01639.x

    Article  Google Scholar 

  • Bruno PG, Ricciardi GP, Petrillo Z, Di Fiore V, Troiano A, Chiodini G (2007) Geophysical and hydrogeological experiments from a shallow hydrothermal system at Solfatara Volcano, Campi Flegrei, Italy: Response to caldera unrest. J Geophys Res 112, B06201. doi:10.1029/2006JB004383

    Google Scholar 

  • Byrdina S, Vandemeulebrouck J, Cardellini C, Legaz A, Camerlynck C, Chiodini G, Lebourg T, Letort J, Motos G, Carrier A, Bascou P (2014) Relations between electrical resistivity, carbon dioxide flux, and self-potential in the shallow hydrothermal system of Solfatara (Phlegrean Fields, Italy). Geophys Res Abstr 16:EGU2014–EGU5204

    Google Scholar 

  • Chiodini G, Frondini F, Cardellini C, Granieri D, Marini D, Ventura G (2001) CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J Geophys Res 106(B8):16213–16221. doi:10.1029/2001JB000246

    Article  Google Scholar 

  • Chiodini G, Todesco M, Caliro S, Del Gaudio C, Macedonio G, Russo M (2003) Magma degassing as a trigger of bradyseismic events: The case of Phlegrean Fields (Italy). Geophys Res Lett 30:1434. doi:10.1029/2002GL016790

    Article  Google Scholar 

  • Cozzolino M, Di Giovanni E, Mauriello P, Vanni Desideri A, Patella D (2012) Resistivity tomography in the park of Pratolino at Vaglia (Florence, Italy). Archaeol Prospect 19:253–260. doi:10.1002/arp.1432

    Article  Google Scholar 

  • Cozzolino M, Mauriello P, Patella D (2014) Resistivity tomography imaging of the substratum of the Bedestan monumental complex at Nicosia, Cyprus. Archaeometry 56:331–350. doi:10.1111/arcm.12018

    Article  Google Scholar 

  • Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys Prospect 52:379–398. doi:10.1111/j.1365-2478.2004.00423.x

    Article  Google Scholar 

  • De Natale G, Pingue F, Allard P, Zollo A (1991) Geophysical and geochemical modeling of the Campi Flegrei caldera. J Volcanol Geotherm Res 48:199–222. doi:10.1016/0377- 0273(91)90043-Y

    Article  Google Scholar 

  • De Natale G, Troise C, Pingue F, Mastrolorenzo G, Pappalardo L, Battaglia M, Boschi E (2006) The Campi Flegrei caldera: unrest mechanisms and hazards. In: Troise C, De Natale G, Kilburn CRJ (eds) Mechanics of activity and unrest at large calderas. Geological Societyof London Special Publications, Location, pp 25–45. doi:10.1144/GSL.SP.2006.269.01.03

    Google Scholar 

  • Di Maio R, Mauriello P, Patella D, Petrillo Z, Piscitelli S, Siniscalchi A, Veneruso M (1997) Self-potential, geoelectric and magnetotelluric studies in Italian active volcanic areas. Ann Geophys 40:519–537. doi:10.4401/ag-3926

    Google Scholar 

  • Di Maio R, Mauriello P, Patella D, Petrillo Z, Piscitelli S, Siniscalchi A (1998a) Electric and electromagnetic outline of the Mount Somma-Vesuvius structural setting. J Volcanol Geotherm Res 82:219–238. doi:10.1016/S0377-0273(97)00066-8

    Article  Google Scholar 

  • Di Maio R, Gerundo M, Giammetti S, Patella D, Piscitelli S, Veneruso M (1998b) Vulcano: self-potential mapping and dipolar geoelectric tomography. Acta Vulcanol 10:133–136, ISSN:1121–9114

    Google Scholar 

  • Di Vito MA, Lirer L, Mastrolorenzo G, Rolandi G (1987) The 1538 Monte Nuovo eruption (Campi Flegrei, Italy). Bull Volcanol 49:608–615. doi:10.1007/BF01079966

    Article  Google Scholar 

  • Di Vito MA, Isaia R, Orsi G, Southon J, D’Antonio M, De Vita S, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:221–246. doi:10.1016/S0377-0273(99)00037-2

    Article  Google Scholar 

  • Dvorak JJ, Mastrolorenzo G (1991) The mechanisms of recent vertical crustal movements in Campi Flegrei caldera, Southern Italy. GSA Spec Pap 263:1–47. doi:10.1130/SPE263-p1

    Google Scholar 

  • Edwards LS (1977) A modified pseudosection for resistivity and induced-polarization. Geophysics 42:1020–1036. doi:10.1190/1.1440762

    Article  Google Scholar 

  • Feng D, Dai Q, Xiao B (2014) Contrast between 2D inversion and 3D inversion based on 2D high-density resistivity data. Trans Nonferrous Met Soc China 24:224–232. doi:10.1016/S1003-6326(14)63051-X

    Article  Google Scholar 

  • Fikos I, Vargemezis G, Zlotnicki J, Puertollano JR, Alanis PB, Pigtain RC, Villacorte EU, Maliport GA, Sasai Y (2012) Electrical resistivity tomography study of Taal volcano hydrothermal system, Philippines. Bull Volcanol 74:1821–1831. doi:10.1007/s00445-012-0638-5

    Article  Google Scholar 

  • Giocoli A, Magrì C, Vannoli P, Piscitelli S, Rizzo E, Siniscalchi A, Burrato P, Basso C, Di Nocera S (2008) Electrical resistivity tomography investigations in the Ufita Valley (Southern Italy). Ann Geophys 51:213–223. doi:10.4401/ag-4443

    Google Scholar 

  • Granieri D, Avino R, Chiodini G (2010) Carbon dioxide diffuse emission from the soil: ten years of observations at Vesuvio and Campi Flegrei (Pozzuoli), and linkages with volcanic activity. Bull Volcanol 72:103–118. doi:10.1007/s00445-009-0304-8

    Article  Google Scholar 

  • Lapenna V, Lorenzo P, Perrone A, Piscitelli S, Sdao F, Rizzo E (2003) High-resolution geoelectrical tomographies in the study of Giarrossa landslide (southern Italy). Bull Eng Geol Environ 62:259–268. doi:10.1007/s10064-002-0184-z

    Article  Google Scholar 

  • Legaz AV, Vandemeulebrouck JR, Revil A, Kemna A, Hurst AW, Reeves R, Papasin R (2009) A case study of resistivity and self-potential signatures of hydrothermal instabilities, Inferno Crater Lake, Waimangu, New Zealand. Geophys Res Lett 36, L12306. doi:10.1029/2009GL037573

    Article  Google Scholar 

  • Letort J, Roux P, Vandemeulebrouck J, Coutant O, Cros E, Wathelet M, Cardellini C, Avino R (2012) High-resolution shallow seismic tomography of a hydrothermal area: application to the Solfatara, Pozzuoli. Geophys J Int 189:1725–1733. doi:10.1111/j.1365-246X.2012.05451.x

    Article  Google Scholar 

  • Li Y, Oldenburg DW (1992) Approximate inverse mappings in DC resistivity problems. Geophys J Int 109:343–362. doi:10.1111/j.1365-246X.1992.tb00101.x

    Article  Google Scholar 

  • Loke MH (2014) Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo Softwares, Penang. www.geotomosoft.com

  • Loke MH, Barker RD (1995) Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 60:1682–1690. doi:10.1190/1.1443900

    Article  Google Scholar 

  • Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152. doi:10.1111/j.1365-2478.1996.tb00142.x

    Article  Google Scholar 

  • Mauriello P, Patella D (1999) Resistivity anomaly imaging by probability tomography. Geophys Prospect 47:411–429. doi:10.1046/j.1365-2478.1999.00137.x

    Article  Google Scholar 

  • Mauriello P, Patella D (2001) Localization of maximum-depth gravity anomaly sources by a distribution of equivalent point masses. Geophysics 66:1431–1437. doi:10.1190/ 1.1487088

    Article  Google Scholar 

  • Mauriello P, Patella D (2008a) Geoelectrical anomalies imaged by polar and dipolar probability tomography. Prog Electromagn Res 87:63–88. doi:10.2528/PIER08092201

    Article  Google Scholar 

  • Mauriello P, Patella D (2008b) Integration of geophysical datasets by a conjoint probability tomography approach. Application to Italian active volcanic areas. Ann Geophys 51:167–180. doi:10.4401/ag-3042

    Google Scholar 

  • Mauriello P, Patella D (2009) A data-adaptive probability-based fast ERT inversion method. Prog Electromagn Res 97:275–290. doi:10.2528/PIER09092307

    Article  Google Scholar 

  • Mauriello P, Patella D, Petrillo Z, Siniscalchi A, Iuliano T, Del Negro C (2004). A geophysical study of the Mount Etna volcanic area. Mt. Etna, Volcano Laboratory, 273–291

  • Nettleton, L. L. (1971). Elementary Gravity and Magnetics for Geologists and Seismologists. Geophysical Monograph Series No. 1, Society of Exploration Geophysicists, Tulsa, OK, USA

  • Nettleton LL (1976) Gravity and magnetics in oil prospecting. McGraw-Hill, New York. ISBN 9780070463035

    Google Scholar 

  • Oliveri del Castillo A, Palumbo A, Percolo E (1968) Contributo allo studio della Solfatara di Pozzuoli (Campi Flegrei) mediante osservazione gravimetriche. Annali Osservatorio Vesuviano 22:217–225

    Google Scholar 

  • Ortega AI, Benito-Calvo A, Porres J, Pérez-González A, Martín Merino MA (2010) Applying electrical resistivity tomography to the identification of endokarstic geometries in the Pleistocene sites of the Sierra de Atapuerca (Burgos, Spain). Archaeol Prospect 17:233–245. doi:10.1002/arp.392

    Article  Google Scholar 

  • Park SK, Van G (1991) Inversion of pole-pole data for 3D resistivity structure beneath arrays of electrodes. Geophysics 56:951–960. doi:10.1190/1.1443128

    Article  Google Scholar 

  • Patella D (1997a) Introduction to ground surface self-potential tomography. Geophys Prospect 45:653–681. doi:10.1046/j.1365-2478.1997.430277.x

    Article  Google Scholar 

  • Patella D (1997b) Self-potential global tomography including topographic effects. Geophys Prospect 45:843–863. doi:10.1046/j.1365-2478.1997.570296.x

    Article  Google Scholar 

  • Petrosino S, Damiano N, Cusano P, Di Vito MA, de Vita S, Del Pezzo E (2012) Subsurface structure of the Solfatara volcano (Campi Flegrei caldera, Italy) as deduced from joint seismic-noise array, volcanological and morphostructural analysis. Geochem Geophys Geosyst 13(7):1–25. doi:10.1029/2011GC004030

    Article  Google Scholar 

  • Richards K, Revil A, Jardani A, Henderson F, Batzle M, Haas A (2010) Pattern of shallow ground water flow at Mount Princeton Hot Springs, Colorado, using geoelectrical methods. J Volzanol Geotherm Res 198:217–232. doi:10.1016/j.jvolgeores.2010.09.001

    Article  Google Scholar 

  • Rosi M, Sbrana A (1987) Introduction, geological setting of the area, stratigraphy, description of mapped products, petrography, tectonics In: Rosi M, Sbrana A (eds) Phlegrean Fields. QRS 114(9) CNR, Rome, pp 9–93. ISBN:451

  • Sasaki Y (1994) 3D resistivity inversion using the finite-element method. Geophysics 59:1839–1848. doi:10.1190/1.1443571

    Article  Google Scholar 

  • Shima H (1990) Two-dimensional automatic resistivity inversion technique using alpha centers. Geophysics 55:682–694. doi:10.1190/1.1442880

    Article  Google Scholar 

  • Skeels DC (1963) An approximate solution of the problem of maximum depth in gravity interpretation. Geophysics 28:724–735. doi:10.1190/1.1439262

    Article  Google Scholar 

  • Soupios PM, Vallianatos F, Papadopoulos I, Makris JP, Marinakis M (2005) Surface-geophysical investigation of a landfill in Hania, Crete. In: Agiountantis Z, Komnitsas K (eds) International Workshop Geoenv 2005. Heliotopos Conferences, Athens, pp 149–156. ISBN:960-881-53-7-1

  • Soupios PM, Papadopoulos I, Kouli M, Georgaki I, Vallianatos F, Kokkinou E (2007) Investigation of waste disposal areas using electrical methods: a case study from Chania, Crete, Greece. Environ Geol 51:1249–1261. doi:10.1007/s00254-006-0418-7

    Article  Google Scholar 

  • Todesco M, Berrino G (2005) Modelling hydrothermal fluid circulation and gravity signals at the Phlegrean Fields caldera. Earth Planet Sci Lett 240:328–338. doi:10.1016/j.epsl.2005.09.016

    Article  Google Scholar 

  • Todesco M, Chiodini G, Macedonio G (2003) Monitoring and modelling hydrothermal fluid emission at La Solfatara (Phlegraean Fields, Italy). An interdisciplinary approach to the study of diffuse degassing. J Volcanol Geotherm Res 125(1):57–79

  • Tripp AC, Hohmann GW, Swift CM (1984) Two-dimensional resistivity inversion. Geophysics 49:1708–1717. doi:10.1190/1.1441578

    Article  Google Scholar 

  • Troiano A, Petrillo Z, Di Giuseppe MG, Balasco M, Diaferia I, Di Fiore B, Siniscalchi A, Patella D (2008) About the shallow resistivity structure of Vesuvius volcano. Ann Geophys 51:181–189. doi:10.4401/ag-3043

    Google Scholar 

  • Troiano A, Di Giuseppe MG, Petrillo Z, Troise C, De Natale G (2011) Ground deformation at calderas driven by fluid injection: modelling unrest episodes at Campi Flegrei (Italy). Geophys J Int 187:833–847. doi:10.1111/j.1365-246X.2011.05149.x

    Article  Google Scholar 

  • Troiano A, Di Giuseppe MG, Patella D, Troise C, De Natale G (2014) Electromagnetic outline of the Solfatara-Pisciarelli hydrothermal system, Campi Flegrei (Southern Italy). J Volcanol Geotherm Res 277:9–21. doi:10.1016/j.jvolgeores.2014.03.005

    Article  Google Scholar 

  • Van Zijl JSV (1985) A Practical Manual on the Resistivity Method. CSIR Report K79, CSIR, Pretoria, p 136

  • Vargemezis G (2014) 3D geoelectrical model of geothermal spring mechanism derived from VLF measurements: A case study from Aggistro (Northern Greece). Geothermics 51:1–8. doi:10.1016/j.geothermics.2013.09.001

    Article  Google Scholar 

  • Ward SH (1990) Resistivity and induced polarization methods. In: Ward SH (ed) Geotechnical and environmental geophysics, Ith edn, Review and Tutorials. Investigations in Geophysics 5 SEG, Tulsa, pp 147–189. ISBN 978-0-931830-99-0

    Chapter  Google Scholar 

  • Wardman JB, Wilson TM, Bodger PS, Cole JW, Johnston DM (2012) Investigating the electrical conductivity of volcanic ash and its effect on HV power systems. Phys Chem Earth A 45–46:128–145. doi:10.1016/j.pce.2011.09.003

    Article  Google Scholar 

  • Xia J, Ludvigson G, Miller RD, Mayer L, Haj A (2010) Delineation of a volcanic ash body using electrical resistivity profiling. J Geophys Eng 7:267–276. doi:10.1088/1742-2132/7/3/005

    Article  Google Scholar 

  • Zeyen H, Pessel M, Ledésert B, Hébert R, Bartier D, Sabin M, Lallemant S (2011) 3D electrical resistivity imaging of the near-surface structure of mud-volcano vents. Tectonophysics 509:181–190. doi:10.1016/j.tecto.2011.05.007

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Executive Editor of the Bulletin of Volcanology, Prof. James D. L. White, the Editor, Prof. Takeshi Nishimura, and two anonymous referees for their valuable comments, which helped to improve the information content of the paper. This study was performed partially with financial support from the MIUR “PREMIALI ITEMS” and the MIUR “PON01-1525 MONICA” projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Di Giuseppe.

Additional information

Editorial responsibility: T. Nishimura

Appendix

Appendix

Outline of the PERTI method

The 3D PERTI method was proposed by Mauriello and Patella (2009) in the framework of the probability tomography theory, which is now briefly outlined in order to better introduce the basic principle underlying the inversion algorithm.

Probability tomography was at first suggested for the self-potential method to identify the places underground, where higher is the occurrence probability of the sources that cause the anomalies detected on the ground (Patella 1997a, b). In geoelectrics, a similar approach was formulated to image the most probable location of the resistivity anomaly source bodies, consisting in plotting the occurrence probability function \( \eta \left({P}_q\right) \), calculated at a grid of points P q (q = 1,2,…,Q) below the ground surface by the formula (Mauriello and Patella 1999)

$$ \eta \left({\mathrm{P}}_q\right)={\mathrm{C}}_q{\displaystyle {\sum}_{k=1}^K{\displaystyle {\sum}_{j_k=1}^{J_k}\left[{\rho}_a\left({\mathrm{P}}_{jk}\right)-\widehat{\rho}\right]}}\psi \left({\mathrm{P}}_{j_k},{\mathrm{P}}_{\mathrm{q}}\right) $$
(A1)

In Eq. A1, \( {\rho}_a\left({P}_{j_k}\right) \) is the measured apparent resistivity at \( {P}_{j_k} \), i.e., the j k -th nodal datum point of the k-th profile (j k  = 1,2,…,J k ; k = 1,2,…,K), \( \widehat{\rho} \) is the resistivity of a homogeneous, isotropic half-space assumed as reference, or starting model, C q is the positive-definite non-null normalization factor, given by

$$ {C}_q={\left\{{\displaystyle {\sum}_{k=1}^K{\displaystyle {\sum}_{j_k=1}^{J_k}{\left[{\rho}_a\left({\mathrm{P}}_{j_k}\right)-\widehat{\rho}\right]}^2\cdot {\displaystyle {\sum}_{k=1}^K{\displaystyle {\sum}_{j_k=1}^{J_k}{\psi}^2\left({\mathrm{P}}_{j_k},{\mathrm{P}}_q\right)}}}}\right\}}^{-1/2} $$
(A2)

and \( \psi \left({\mathrm{P}}_{j_k},{\mathrm{P}}_q\right) \) is the j k -th Frechet derivative referred to the reference model, also known as the sensitivity function of the array. It physically describes the effect generated at \( {\mathrm{P}}_{j_k} \) by a small perturbation of the reference resistivity at P q , under Born approximation (Loke and Barker 1995, 1996; Mauriello and Patella 1999).

Including topography, the sensitivity function for the DD array is calculated as follows. Taking a rectangular coordinate system with the xy-plane at mean sea level and the z-axis upwards, and indicating with \( \left({x}_{j_k}^{\mathrm{A}},{y}_{j_k}^{\mathrm{A}},{z}_{j_k}^{\mathrm{A}}\right) \), \( \left({x}_{j_k}^{\mathrm{B}},{y}_{j_k}^{\mathrm{B}},{z}_{j_k}^{\mathrm{B}}\right) \), and \( \left({x}_{j_k}^{\mathrm{M}},{y}_{j_k}^{\mathrm{M}},{z}_{j_k}^{\mathrm{M}}\right) \), \( \left({x}_{j_k}^{\mathrm{N}},{y}_{j_k}^{\mathrm{N}},{z}_{j_k}^{\mathrm{N}}\right) \) the coordinates of the current electrodes A and B and potential electrodes M and N, respectively, and with (x P q , y P q , z P q ) the coordinates of the model point P q , \( \psi \left({\mathrm{P}}_{j_k},{\mathrm{P}}_q\right) \) is explicated asFor (8), the authors may emphasize in the manuscript that the authors interpret the results of gravitational survey assuming that the sources are located almost at same locations although this assumption should be examined.

$$ \psi \left({\mathrm{P}}_{j_k},{\mathrm{P}}_q\right)=\frac{G_{j_k}}{4{\pi}^2}\cdot \left({L}_{q,{j}_k}^{\mathrm{AM}}-{L}_{q,{j}_k}^{\mathrm{AN}}-{L}_{q,{j}_k}^{\mathrm{BM}}+{L}_{q,{j}_k}^{\mathrm{BN}}\right), $$
(A3)

where \( {G}_{j_k} \) is the geometrical factor of the DD array and

$$ {L}_{q,{j}_k}^{\mathrm{A}\mathrm{M}}=\frac{\left({x}_q^{\mathrm{P}}-{x}_{j_k}^A\right)\left({x}_q^P-{x}_{j_k}^M\right)+\left({y}_q^P-{y}_{j_k}^A\right)\left({y}_q^P-{y}_{j_k}^M\right)+\left({z}_q^{\mathrm{P}}-{z}_{j_k}^A\right)\left({z}_q^{\mathrm{P}}-{z}_{j_k}^{\mathrm{M}}\right)}{{\left[{\left({x}_q^{\mathrm{P}}-{x}_{j_k}^A\right)}^2+{\left({y}_q^{\mathrm{P}}-{y}_{j_k}^{\mathrm{A}}\right)}^2+{\left({z}_q^{\mathrm{P}}-{z}_{j_k}^{\mathrm{A}}\right)}^2\right]}^{3/2}{\left[{\left({x}_q^{\mathrm{P}}-{x}_{j_k}^{\mathrm{M}}\right)}^2+{\left({y}_q^{\mathrm{P}}-{y}_{j_k}^{\mathrm{M}}\right)}^2+{\left({z}_q^{\mathrm{P}}-{z}_{j_k}^{\mathrm{M}}\right)}^2\right]}^{3/2}} $$
(A4a)
$$ {L}_{q,{j}_k}^{\mathrm{A}\mathrm{N}}=\frac{\left({x}_q^{\mathrm{P}}-{x}_{j_k}^{\mathrm{A}}\right)\left({x}_q^{\mathrm{P}}-{x}_{j_k}^{\mathrm{N}}\right)+\left({y}_q^{\mathrm{P}}-{y}_{j_k}^{\mathrm{A}}\right)\left({y}_q^{\mathrm{P}}-{y}_{j_k}^{\mathrm{N}}\right)+\left({z}_q^{\mathrm{P}}-{z}_{j_k}^{\mathrm{A}}\right)\left({z}_q^{\mathrm{P}}-{z}_{j_k}^{\mathrm{N}}\right)}{{\left[{\left({x}_q^{\mathrm{P}}-{x}_{j_k}^{\mathrm{A}}\right)}^2+{\left({y}_q^{\mathrm{P}}-{y}_{j_k}^{\mathrm{A}}\right)}^2+{\left({z}_q^{\mathrm{P}}-{z}_{j_k}^{\mathrm{A}}\right)}^2\right]}^{3/2}{\left[{\left({x}_q^{\mathrm{P}}-{x}_{j_k}^{\mathrm{N}}\right)}^2+{\left({y}_q^{\mathrm{P}}-{y}_{j_k}^{\mathrm{N}}\right)}^2+{\left({z}_q^{\mathrm{P}}-{z}_{j_k}^{\mathrm{N}}\right)}^2\right]}^{3/2}} $$
(A4b)
$$ {L}_{q,{j}_k}^{\mathrm{B}\mathrm{M}}=\frac{\left({x}_q^{\mathrm{P}}-{x}_{j_k}^{\mathrm{B}}\right)\left({x}_q^{\mathrm{P}}-{x}_{j_k}^{\mathrm{M}}\right)+\left({y}_q^{\mathrm{P}}-{y}_{j_k}^{\mathrm{B}}\right)\left({y}_q^{\mathrm{P}}-{y}_{j_k}^{\mathrm{M}}\right)+\left({z}_q^{\mathrm{P}}-{z}_{j_k}^{\mathrm{B}}\right)\left({z}_q^{\mathrm{P}}-{z}_{j_k}^{\mathrm{M}}\right)}{{\left[{\left({x}_q^{\mathrm{P}}-{x}_{j_k}^{\mathrm{B}}\right)}^2+{\left({y}_q^{\mathrm{P}}-{y}_{j_k}^{\mathrm{B}}\right)}^2+{\left({z}_q^{\mathrm{P}}-{z}_{j_k}^{\mathrm{B}}\right)}^2\right]}^{3/2}{\left[{\left({x}_q^{\mathrm{P}}-{x}_{j_k}^{\mathrm{M}}\right)}^2+{\left({y}_q^{\mathrm{P}}-{y}_{j_k}^{\mathrm{M}}\right)}^2+{\left({z}_q^{\mathrm{P}}-{z}_{j_k}^{\mathrm{M}}\right)}^2\right]}^{3/2}} $$
(A4c)
$$ {L}_{q,{j}_k}^{\mathrm{B}\mathrm{N}}=\frac{\left({x}_q^{\mathrm{P}}-{x}_{j_k}^{\mathrm{B}}\right)\left({x}_q^{\mathrm{P}}-{x}_{j_k}^{\mathrm{N}}\right)+\left({y}_q^{\mathrm{P}}-{y}_{j_k}^{\mathrm{B}}\right)\left({y}_q^{\mathrm{P}}-{y}_{j_k}^{\mathrm{N}}\right)+\left({z}_q^{\mathrm{P}}-{z}_{j_k}^{\mathrm{B}}\right)\left({z}_q^{\mathrm{P}}-{z}_{j_k}^{\mathrm{N}}\right)}{{\left[{\left({x}_q^{\mathrm{P}}-{x}_{j_k}^{\mathrm{B}}\right)}^2+{\left({y}_q^{\mathrm{P}}-{y}_{j_k}^{\mathrm{B}}\right)}^2+{\left({z}_q^{\mathrm{P}}-{z}_{j_k}^{\mathrm{B}}\right)}^2\right]}^{3/2}{\left[{\left({x}_q^{\mathrm{P}}-{x}_{j_k}^{\mathrm{N}}\right)}^2+{\left({y}_q^{\mathrm{P}}-{y}_{j_k}^{\mathrm{N}}\right)}^2+{\left({z}_q^{\mathrm{P}}-{z}_{j_k}^{\mathrm{N}}\right)}^2\right]}^{3/2}} $$
(A4d)

In practice, the average apparent resistivity is assumed as reference uniform resistivity \( \widehat{\rho} \). Hence, η(P q ) which is a number between −1 and +1, is interpreted as an occurrence probability measure of a resistivity deviation from \( \widehat{\rho} \) at P q Positive or negative values Of η(P q ) give the occurrence probability of an increase or a decrease of resistivity, respectively.

Many field cases were dealt with using this approach, including the Italian volcanic areas of Mt. Etna and Mt. Vesuvius (Mauriello et al. 2004; Mauriello and Patella 2008a, b). In all cases, the mapping of η(P q ) proved to be a reliable tool for outlining geometry and location of the source bodies, compatibly with the available data set.

Using Eq. A1, no information can, however, be deducted as to the real resistivity values of the structures, geometrically defined by the analysis of the probability index η(P q ). Just to find a solution to this last problem that the PERTI method has been proposed. The basic principle for the PERTI method is that the reference resistivity \( \widehat{\rho} \) must not be pre-assigned, but assumed to be the unknown true resistivity value ρ q at P q . With such an assumption, η(P q ) given in Eq.A1 can be rewritten as

$$ \eta \left({\mathrm{P}}_q\right)={\mathrm{C}}_q{\displaystyle {\sum}_{\mathrm{k}=1}^K{\displaystyle {\sum}_{j_k=1}^{J_k}\left[{\rho}_a\left({\mathrm{P}}_{jk}\right)-{\rho}_q\right]\psi \left({\mathrm{P}}_{jk},{\rho}_q\right)}} $$
(A5)

The rationale for the PERTI approach is that if η(P q ) = 0 resulted at P q , then the most probable resistivity would be there exactly ρ q . Since it is always C q  ≠ 0, the η(P q ) = 0 condition allows the following inversion formula to be derived (Mauriello and Patella 2009)

$$ {\rho}_q=\frac{{\displaystyle {\sum}_{\mathrm{k}=1}^K{\displaystyle {\sum}_{j_k=1}^{J_k}{\rho}_a\left({\mathrm{P}}_{j_k}\right)\psi \left({\mathrm{P}}_{j_k},{\mathrm{P}}_q\right)}}}{{\displaystyle {\sum}_{\mathrm{k}=1}^K{\displaystyle {\sum}_{j_k=1}^{J_k}\psi \left({\mathrm{P}}_{j_k},{\mathrm{P}}_q\right)}}} $$
(A6)

The most probable real resistivity ρ q at P q , compatibly with data accuracy and density and within the assumed first order Born approximation, is simply derived as the weighted average of the apparent resistivity values, using as weights the sensitivity function of the array. Thus, the PERTI formula of Eq. A3 can easily be converted into a user-friendly algorithm, quite apt to combine a great multiplicity of large datasets.

The main features of the PERTI method, derived from many simulations and field tests (Mauriello and Patella 2009; Cozzolino et al. 2012, 2014), are: (i) independence from a priori information; (ii) absence of iterative processes; (iii) drastic reduction of computing time with respect to standard deterministic inversion tools, like RES3DINV and ERTlab, which may require extremely long time of several hours, compared with the few ten seconds of the PERTI software, to elaborate a set of several thousands data points on a conventional 1 GB RAM PC (Cozzolino et al. 2014); (iv) independence from data acquisition techniques and spatial regularity, unlike the above mentioned commercial softwares, which are designed to invert data collected with a rectangular grid of electrodes.

A direct consequence of not requiring a priori information and iterative processes is, for the PERTI method, the uselessness of the computation of the RMS error between measured and modelled apparent resistivity values. The RMS error, whatever is, cannot be lowered in any way within the PERTI theory. Nonetheless, the same tests have shown PERTI modelling results quite comparable with those from the mentioned commercial softwares (Mauriello and Patella 2009; Cozzolino et al. 2012, 2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Giuseppe, M.G., Troiano, A., Fedele, A. et al. Electrical resistivity tomography imaging of the near-surface structure of the Solfatara crater, Campi Flegrei (Naples, Italy). Bull Volcanol 77, 27 (2015). https://doi.org/10.1007/s00445-015-0910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0910-6

Keywords

Navigation