Skip to main content
Log in

The Breccia Museo formation, Campi Flegrei, southern Italy: geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Breccia Museo is one of the most debated volcanic formations of the Campi Flegrei volcanic district. The deposit, made up of six distinctive stratigraphic units, has been interpreted by some as the proximal facies of the major caldera-forming Campanian Ignimbrite eruption, and by others as the product of several, more recent, independent and localized events. New geochemical and chemostratigraphical data and Ar–Ar age determinations for several units of the Breccia Museo deposits (~39 ka), correlate well with the Campanian Ignimbrite-forming eruption. The chemical zoning of the Breccia Museo deposits is interpreted here to be a consequence of a three-stage event that tapped a vertically zoned trachytic magma chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen SR, Cas RAF (1998) Syn-eruptive chaotic breccia on Kos, Greece, associated with an energetic pyroclastic flow. Bull Volcanol 63:421–432

    Google Scholar 

  • Appleton JD (1972) Petrogenesis of potassium-rich lavas from the Roccamonfina Volcano, Roman Region, Italy. J Petrol 13:425–456

    Google Scholar 

  • Armienti P, Barberi F, Bizouard H, Clocchiatti R, Innocenti F, Metrich N, Rosi M, Sbrana A (1983) The Phlegrean Fields: magma evolution within a shallow chamber. J Volcanol Geotherm Res 17:289–311

    Article  Google Scholar 

  • Barberi F, Innocenti F, Lirer L, Munno R, Pescatore TS, Santacroce R (1978) The Campanian Ignimbrite: a major prehistoric eruption in the Neapolitan area (Italy). Bull Volcanol 41:10–22

    Article  Google Scholar 

  • Barberi F, Cassano E, La Torre P, Sbrana A (1991) Structural evolution of Campi Flegrei caldera in light of volcanological and geophysical data. J Volcanol Geotherm Res 48:33–49

    Article  Google Scholar 

  • Beccaluva L, Di Girolamo P, Serri G (1991) Petrogenesis and tectonic setting of the Roman Volcanic Province, Italy. Lithos 26:191–221

    Article  Google Scholar 

  • Bohrson WA, Spera FJ, Fowler SJ, Belkin HE, De Vivo B, Rolandi G (2006) Petrogenesis of the Campanian Ignimbrite: implications for crystal-melt separation and open-system processes from major and trace elements and Th isotopic data. In: De Vivo B (ed) Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. Elsevier, Amsterdam, pp 249–288 (in the series Developments in Volcanology, 9)

    Chapter  Google Scholar 

  • Cappelletti P, Cerri G, Colella A, de’Gennaro M, Langella A, Perrotta A, Scarpati C (2003) Post-eruptive processes in the Campanian Ignimbrite. Mineral Petrol 79:79–97

    Article  Google Scholar 

  • Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian Ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 75:183–219

    Article  Google Scholar 

  • Conticelli S, D’Antonio M, Pinarelli L, Civetta L (2002) Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr–Nd–Pb isotope data from Roman Province and Southern Tuscany. Mineral Petrol 74:189–222

    Article  Google Scholar 

  • Cornell W, Carey S, Sigurdsson H (1983) Computer simulation of transport and deposition of the Campanian Y-5 ash. J Volcanol Geotherm Res 17:89–109

    Article  Google Scholar 

  • Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera—Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geotherm Res 133:157–170

    Article  Google Scholar 

  • De La Roche H, Leterrier P, Grandclaude P, Marchal E (1980) A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analyses. Its relationships with current nomenclature. Chem Geol 29:183–210

    Article  Google Scholar 

  • De Lorenzo G (1904) L’attività vulcanica dei Campi Flegrei. Rend. Acc. Sc. FF. MM., serie 3 10:203–221

    Google Scholar 

  • De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian Volcanic Plain (Italy). Mineral Petrol 73:47–65

    Article  Google Scholar 

  • Di Girolamo P (1970) Differenziazione gravitativa e curve isochimiche nella “Ignimbrite Campana”. Rend Soc Ital Mineral Petrol 26:3–44

    Google Scholar 

  • Di Girolamo P, Ghiara MR, Lirer L, Munno R, Rolandi G, Stanzione D (1984) Vulcanologia e petrologia dei Campi Flegrei. Boll Soc Geol It 103:349–413

    Google Scholar 

  • Druitt TH, Sparks RSJ (1982) A proximal ignimbrite breccia facies on Santorini, Greece. J Volcanol Geotherm Res 13:147–171

    Article  Google Scholar 

  • Druitt TH, Mellors RA, Pyle DM, Sparks RSJ (1989) Explosive volcanism on Santorini, Greece. Geol Mag 126:95–126

    Google Scholar 

  • Fedele FG, Giaccio B, Isaia R, Orsi G (2002) Ecosystem impact of the Campanian Ignimbrite eruption in Late Pleistocene Europe. Quaternary Res 57:420–424

    Article  Google Scholar 

  • Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of a large-volume pyroclastic flow-emplacement of the Campanian Ignimbrite, Italy. J Volcanol Geotherm Res 56:205–220

    Article  Google Scholar 

  • Fowler SJ, Spera FJ, Bohrson WA, Belkin HE, De Vivo B (2007) Phase equilibria constraints on the chemical and physical evolution of the Campanian Ignimbrite. J Petrol 48:459–493

    Article  Google Scholar 

  • Freundt A, Schmincke H-U (1985) Lithic-enriched segregation bodies in pyroclastic flow deposits of Laacher See volcano (East Eifel, Germany). J Volcanol Geotherm Res 25:193–224

    Article  Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modelling and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Fulignati P, Marianelli M, Proto M, Sbrana A (2004) Evidences for disruption of a crystallizing front in a magma chamber during caldera collapse: an example from the Breccia Museo unit (Campanian Ignimbrite eruption, Italy). J Volcanol Geotherm Res 133:141–155

    Article  Google Scholar 

  • Grove TL, Bryan WB (1983) Fractionation of pyroxene–phyric MORB at low-pressure: an experimental study. Contrib Mineral Petrol 84:293–309

    Article  Google Scholar 

  • Hildreth W (1979) The Bishop Tuff: evidence for the origin of compositional zonation in silicic magma chambers. Geol Soc Am Special Paper 180:43–75

    Google Scholar 

  • Johnston-Lavis HJ (1888) Excavation near Naples. Report of the Committee Appointed for the Investigation of the Volcanic Phenomena of Vesuvius and its Neighbourhood. Spottiswoode and Co., London, pp 1–7

  • Kitagawa H, Van Der Plicht J (1998) Atmospheric radiocarbon calibration to 45000 ys. BP: late glacial fluctuations and cosmogenic isotope production. Science 279:1187–1190

    Article  Google Scholar 

  • Lanphere M, Champion D, Melluso L, Morra V, Perrotta A, Scarpati C, Tedesco D, Calvert A (2007) 40Ar/39Ar ages of the AD 79 eruption of Vesuvius, Italy. Bull Volcanol 69:259–263

    Article  Google Scholar 

  • Lindsley DH, Spencer KJ (1982) Fe–Ti oxide geothermometry: reducing analyses of coexisting Ti-magnetite (Mt) and ilmenite (I1m). Eos 63:471

    Google Scholar 

  • Lirer L, Rolandi G, Rubin M (1991) 14C Age of the “Museum Breccia” (Campi Flegrei) and its relevance for the origin of the Campanian Ignimbrite. J Volcanol Geotherm Res 48:223–227

    Article  Google Scholar 

  • Melluso L, Morra V, Perrotta A, Scarpati C, Adabbo M (1995) The eruption of the Breccia Museo (Campi Flegrei, Italy): fractional crystallization processes in a shallow, zoned magma chamber and implications for the eruptive dynamics. J Volcanol Geotherm Res 68:325–339

    Article  Google Scholar 

  • Melluso L, Morra V, Brotzu P, Tommasini S, Renna MR, Duncan RA, Franciosi L, D’Amelio F (2005) Geochronology and petrogenesis of the Cretaceous Antampombato–Ambatovy complex and associated dyke swarm, Madagascar. J Petrol 46:1963–1996

    Article  Google Scholar 

  • Milner DM, Cole JW, Wood CP (2003) Mamaku Ignimbrite: a caldera-forming ignimbrite erupted from a compositionally zoned magma chamber in Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 122:243–264

    Article  Google Scholar 

  • Morra V, Lustrino M, Melluso L, Ricci G, Vannucci R, Zanetti A, d’Amelio F (2003) Trace element partition coefficients between feldspar, clinopyroxene, biotite, Ti-magnetite, apatite and felsic potassic glass from Campi Flegrei (S. Italy). EGS-AGU-EUG Joint Assembly, Nice 2003 (abstract)

  • Orsi G, de Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214

    Article  Google Scholar 

  • Panter KS, Kyle PR, Smellie JL (1997) Petrogenesis of a phonolite–trachyte succession at Mount Sidley, Marie Byrd Land, Antarctica. J Petrol 38:1225–1253

    Article  Google Scholar 

  • Pappalardo L, Civetta L, D’Antonio M, Deino A, Di Vito M, Orsi G, Carandente A, de Vita S, Isaia R, Piochi M (1999) Chemical and Sr-isotopic evolution of the Phlegrean magmatic system before the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions. J Volcanol Geotherm Res 91:141–166

    Article  Google Scholar 

  • Pappalardo L, Civetta L, de Vita S, Di Vito M, Orsi G, Carandente A, Fisher RV (2002) Timing of magma extraction during the Campanian Ignimbrite eruption (Campi Flegrei Caldera). J Volcanol Geotherm Res 114:479–497

    Article  Google Scholar 

  • Peccerillo A (2005) Plio-Quaternary volcanism in Italy: Petrology, geochemistry, geodynamics. Springer, Berlin

    Google Scholar 

  • Perrotta A (1992) Evoluzione vulcanologica dei Campi Flegrei tra 20000 e 12000 anni e dinamica dell’eruzione della Breccia Museo. PhD Thesis, Università di Napoli, p 103

  • Perrotta A, Scarpati C (1994) The dynamics of Breccia Museo eruption (Campi Flegrei, Italy) and the significance of spatter clasts associated with lithic breccias. J Volcanol Geotherm Res 59:335–355

    Article  Google Scholar 

  • Perrotta A, Scarpati C (2003) Volume partition between the plinian and co-ignimbrite air fall deposits of the Campanian Ignimbrite eruption. Mineral Petrol 79:67–78

    Article  Google Scholar 

  • Perrotta A, Scarpati C, Luongo G, Morra V (2006) The Campi Flegrei caldera boundary in the city of Naples. In: De Vivo B (ed) Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. Elsevier, Amsterdam, pp 85–96 (in the series Developments in Volcanology, 9)

    Chapter  Google Scholar 

  • Ponomareva VV, Kyle PR, Meleketsev IV, Rinkleff PG, Dirksen OV, Sulerzhitsky LD, Zaretskaia NE, Rourke R (2004) The 7600 (14C) year BP Kurile Lake caldera-forming eruption, Kamchatka, Russia: stratigraphy and field relationships. J Volcanol Geotherm Res 136:199–222

    Article  Google Scholar 

  • Pyle DM, Ricketts GD, Margari V, van Andel TH, Sinitsyn AA, Praslov ND, Lisitsyn S (2006) Wide dispersal and deposition of distal tephra during the Pleistocene “Campanian Ignimbrite/Y5” eruption, Italy. Quaternary Sci Rev 25:2713–2728

    Article  Google Scholar 

  • Reubi O, Nicholls IA (2004) Variability in eruptive dynamics associated with caldera collapse: an example from two successive eruptions at Batur volcanic field, Bali, Indonesia. Bull Volcanol 66:134–148

    Article  Google Scholar 

  • Ricci G (2000) Il distretto vulcanico dei Campi Flegrei: petrologia e geochimica dei depositi di breccia e dei prodotti piroclastici associati. PhD Thesis, Univeristà di Napoli, p 95

  • Rittmann A (1950) Rilevamento geologico della collina dei Camaldoli nei Campi Flegrei. Boll Soc Geol It 69:129–177

    Google Scholar 

  • Rock NMS (1982) Chemical mineralogy of the Monchique alkaline complex, Southern Portugal. Contrib Mineral Petrol 81:64–78

    Article  Google Scholar 

  • Rolandi G, Bellucci F, Heizler MT, Belkin HE, De Vivo B (2003) Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic Zone, southern Italy. Mineral Petrol 79:3–31

    Article  Google Scholar 

  • Rosi M, Sbrana A (1987) The Phlegrean Fields. C.N.R. Quaderni de “La ricerca scientifica", 114, pp 175

  • Rosi M, Vezzoli L, Aleotti P, De Censi M (1996) Interaction between caldera collapse and eruptive dynamics during the Campanian Ignimbrite eruption, Phlegrean Fields, Italy. Bull Volcanol 57:541–554

    Article  Google Scholar 

  • Rosi M, Vezzoli L, Castelmenzano A, Grieco G (1999) Plinian pumice fall deposit of the Campanian Ignimbrite eruption (Phlegraean Fields, Italy). J Volcanol Geotherm Res 91:179–198

    Article  Google Scholar 

  • Scandone R, Bellucci F, Lirer L, Rolandi G (1991) The structure of the Campanian Plain and the activity of the Neapolitan volcanoes (Italy). J Volcanol Geotherm Res 48:1–31

    Article  Google Scholar 

  • Scarpati C, Cole P, Perrotta A (1993) The Neapolitan Yellow Tuff—a large volume multiphase eruption from Campi Flegrei, Southern Italy. Bull Volcanol 55:343–356

    Article  Google Scholar 

  • Schreiber U, Anders A, Koppen J (1999) Mixing and chemical interdiffusion of trachytic and latitic magma in a subvolcanic complex of the Tertiary Westerwald (Germany). Lithos 46:695–714

    Article  Google Scholar 

  • Signorelli S, Vaggelli G, Francalanci L, Rosi M (1999) Origin of magmas feeding the Plinian phase of the Campanian Ignimbrite eruption, Phlegrean Fields (Italy): constraints based on matrix-glass and glass-inclusion compositions. J Volcanol Geotherm Res 91:199–220

    Article  Google Scholar 

  • Sparks RSJ, Huang TC (1980) The volcanological significance of deep-sea ash layers associated with ignimbrites. Geol Mag 117:425–436

    Google Scholar 

  • Stormer JC (1983) The effect of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides. Am Mineral 68:586–594

    Google Scholar 

  • Stormer JC, Nicholls J (1978) XLFrac: a program for interactive testing of magmatic differentiation models. Comput Geosci 4:143–159

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Lond Spec Publ 42:313–345

  • Thunnell R, Federman A, Sparks RSJ, Williams D (1979) The age, origin and volcanological significance of the Y-5 ash layer in the Mediterranean. Quaternary Res 12:241–252

    Article  Google Scholar 

  • Vilardo G, Terranova C, Bronzino G, Giordano S, Ventura G, Alessio G, Gabriele M, Mainolfi R, Pagliuca E, Veneruso M (2001) SISCam: Sistema Informativo Sismotettonico della Regione Campania. Laboratorio di Geomatica e Cartografia INGV-OV

  • Villemant B (1988) Trace element evolution in the Phlegrean Fields (Central Italy): fractional crystallization and selective enrichment. Contrib Mineral Petrol 98:169–183

    Article  Google Scholar 

  • Walker GPL (1985) Origin of coarse lithic breccias near ignimbrite source vents. J Volcanol Geotherm Res 25:157–171

    Article  Google Scholar 

  • Wilson CJN, Houghton BF, McWilliams MO, Lanphere MA, Weaver SD, Briggs RM (1995) Volcanic and structural evolution of the Taupo Volcanic Zone, New Zealand: a review. J Volcanol Geotherm Res 68:1–28

    Article  Google Scholar 

  • Wulf S, Kraml M, Brauer A, Keller J, Negendank JFW (2004) Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quatern Int 122:7–30

    Article  Google Scholar 

Download references

Acknowledgements

The authors warmly thank Antonio Canzanella for its kind help during XRF analyses, Marcello Serracino for skilled microprobe work and James Saburomaru for assistance during Ar–Ar age measurements. An early version of the manuscript was kindly reviewed by Darren Gravley, whose suggestions greatly improved its quality and readability. Associate Editor M. A. Clynne and official reviewers W. Bohrson and D. Pyle are gratefully thanked for their very useful constructive criticism. Financial support was provided by PRIN 2003 (to L.M.) and Legge 5 Regione Campania (to V.M.) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Fedele.

Additional information

Editorial responsibility: MA Clynne

Electronic supplementary material

Below is the linked to the electronic supplementary material.

Electronic Appendix

(XLS 250 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedele, L., Scarpati, C., Lanphere, M. et al. The Breccia Museo formation, Campi Flegrei, southern Italy: geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption. Bull Volcanol 70, 1189–1219 (2008). https://doi.org/10.1007/s00445-008-0197-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-008-0197-y

Keywords

Navigation