Skip to main content
Log in

The Neapolitan Yellow Tuff — A large volume multiphase eruption from Campi Flegrei, Southern Italy

  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

the Neapolitan Yellow Tuff (NYT) (12 ka BP) is considered to be the product of a single eruption. Two different members (A and B) have been identified and can be correlated around the whole of Campi Flegrei. Member A is made up of at least 6 fall units including both ash and lapilli horizons. The basal stratified ash unit (A1) is interpreted to be a phreatoplinian fall deposit, since it shows a widespread dispersal (>1000 km2) and a constant thickness over considerable topography. The absence of many lapilli fall units in proximal and medial areas testifies to the erosive power of the intervening pyroclastic surges. The overlying member B was formed by many pyroclastic flows, radially distributed around Campi Flegrei, that varied widely in their eruptive and emplacement mechanisms. In some of the most proximal exposures coarse scoria and lithic-rich deposits, sometimes welded, have been identified at the base of member B. Isopach and isopleth maps of fall-units, combined with the distribution of the coarse proximal facies, indicate that the eruptive vent was located in the NE area of Campi Flegrei. It is considered that the NYT eruption produced collapse of a caldera approximately 10 km diameter within Campi Flegrei. The caldera rim, located by geological and borehole evidence, is now largely buried by the products of more recent eruptions. Initiation of caldera collapse may have been contemporaneous with the start of the second phase (member B). It is suggested that there was a single vent throughout the eruption rather than the development of multiple or ring vents. Chemical data indicate that different levels of a zoned trachyte-phonolite magma chamber were tapped during the eruption. The minimum volume of the NYT is calculated to be about 50 km3 (DRE), of which 35 km3 (∼70%) occurs within the caldera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alessio M, Bella F, Improta S, Belluomini G, Cortesi C, Turi B (1971) University of Rome Carbon-14 Dates IX Radiocarbon 13(2):395–411

    Google Scholar 

  • Alessio M, Bella F, Improta S, Belluomini G, Cortesi C, Turi B (1973) University of Rome Carbon-14 Dates X Radiocarbon 15(1):165–178

    Google Scholar 

  • Alessio M, Bella F, Improta S, Belluomini G, Cortesi C, Turi B (1974) University of Rome Carbon-14 Dates XII Radiocarbon 16(3):358–367

    Google Scholar 

  • Allen T (1981) Particle size measuremernt. Chapman and Hall, pp 1–678

  • Balley RA, Dalrymple GE, Lanphere MA (1976) Volcanism, structure and geochronology of Long Valley Caldera, Mono County, California. J Geophys Res 81:725–744

    Google Scholar 

  • Barberi F, Innocenti F, Lirer L, Munno R, Pescatore T, Santacroce R (1978) The Campanian Ignimbrite: a major prehistoric eruption in the neapolitan area (Italy). Bull Volcanol 41:1–22

    Google Scholar 

  • Barberi F, Cassano E, La Torre P, Sbrana A (1991) Structural evolution of Campi Flegrei in light of volcanological and geophysical data. J Volcanol Geotherm Res 48:33–50

    Google Scholar 

  • Branney MJ (1991) Eruption and depositional facies of the Whorneyside Tuff Formation, English Lake District: An exceptionally large-magnitude phreatoplinian eruption. Geol Soc Am Bull 103:886–897

    Google Scholar 

  • Capaldi G, Civetta L, Di Girolamo P, Lanzara R, Orsi G, Scarpati C (1987) Volcancological and geochemical constraints on the genesis of Yellow-Tuffs in the Neapolitan-Phlegrean area. Rend Acc Sc Fis Mat Special issue: 25–40

  • Cas RAF, Wright JV (1987) Volcanic succession: modern and ancient. Allen and Unwin, London, pp 1–529

    Google Scholar 

  • Cassignol C, Gillot PY (1982) Range and effectiveness of unspiked potassium-argon dating: experimental groundwork and application. Numerical dating in stratigraphy GS Odin, J Will and Sons ed, New York, 160–179

  • Cole PD, Scarpati C (1993) A facies interpretation of the eruption and emplacement mechanisms of the upper part of the Neapolitan Yellow Tuff, Campi Flegrei southern Italy. Bull Volcanol (in press)

  • de'Gennaro M, Petrosino P, Conte MT, Munno R, Colella C (1990) Zeolite chemistry and distribution in a Neapolitan yellow tuff deposit. Eur J Mineral 2:779–786

    Google Scholar 

  • D'Erasmo G (1931) Studio geologico dei pozzi profondi della Campania. Boll Soc Nat 43:15–130

    Google Scholar 

  • Di Girolamo P (1968) Piroclastiti stratificate riferibili al II periodo flegreo nella pianura campana tra il Volturno e Napoli. Per Mineral 37:341–371

    Google Scholar 

  • Di Girolamo P, Ghiara MR, Lirer L, Munno R, Rolandi G, Stanzione D (1984) Vulcanologia e petrologia dei Campi Flegrei. Boll Soc Geol Ital 103:349–413

    Google Scholar 

  • Dzulynski S, Kotlarczyk J (1962) On load-casted ripples. Annales Soc Géol Pologne 32:148–159

    Google Scholar 

  • Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer-Verlag, Berlin, pp 1–472

    Google Scholar 

  • Frezzotti M, Giraudi C (1989) La conca di Aremogna. Guida all'escursione. 59–65

  • Gardner JE, Sigurdsson H, Carey SN (1991) Eruption dynamics and magma withdrawal during the plinian phase of the Bishop Tuff eruption. J Geophys Res 96 (B5):8097–8112

    Google Scholar 

  • Gottardi G (1989) The genesis of zeolites. Eur J Mineral 1:479–487

    Google Scholar 

  • Hay RL (1978) Geologic occurrences of zeolites. In: Sand LB & Mumpton FA (eds), natural zeolites occurrence, properties, use. Pergamon Press, Oxford, 135–144

    Google Scholar 

  • Hay RL (1986) Geologic occurrence of zeolites and some associated minerals. Pure Appl Chem 58:1339–1342

    Google Scholar 

  • Heiken G (1972) Morphology and petrography of volcanic ashes. Geol Soc Am Bull 83:1961–1988

    Google Scholar 

  • Heiken G (1974) An atlas of volcanic ash. Smith Contr Earth Sci 12:1–101

    Google Scholar 

  • Heiken G, Wohletz KH (1985) Volcanic ash. Univ Calif Press pp 1–246

  • Inman DL (1952) Measures for describing the size distribution of sediments. J Sed Petrol 22:125–145

    Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total Al-kali-Silica diagram. J Petrol 27(3):745–750

    Google Scholar 

  • Lirer L, Munno R (1975) Il tufo giallo napoletano (Campi Flegrei). Per Mineral 44:103–118

    Google Scholar 

  • Lirer L, Luongo G, Scandone R (1987) On the volcanological evolution of Campi Flegrei. EOS 68(16):226–233

    Google Scholar 

  • Lipman PW (1976) Caldera-collapse breccias in the western San Juan Mountains, Colorado. Geol Soc Am Bull 87:1397–1410

    Google Scholar 

  • McPhie J (1988) Primary and redeposited facies from a large-magnitude, rhyolitic, phreatomagmatic eruption: Cana Creek Tuff, Late Carboniferus, Australia. J Volcanol Geotherm Res 28 (3/4):319–350

    Google Scholar 

  • Minucci L (1964) Rotary drilling for geothermal energy. Conference New Sources Energy 234–244

  • Norin E (1955) The mineral composition of the Neapolitan Yellow Tuff. Geol Rund 43:526–534

    Google Scholar 

  • Orsi G, Scarpati C (1989) Stratigrafia e dinamica eruttiva del Tufo Giallo Napoletano, Bol GNV 2:917–930

    Google Scholar 

  • Orsi G, Civetta L, Aprile A, D'Antonio M, De Vita S, Gallo G, Piochi M (1991) The Neapolitan Yellow Tuff: dynamics, emplacement mechanism and magma evolution of a phreatoplinian-to-plinian eruption. CEV fieldguide 76–115

  • Parascandola A (1936) I vulcani occidentali di Napoli. Boll Soc Nat 48:39–58

    Google Scholar 

  • Paterne M, Guichard F, Labeyrie J, Gillot PY, Duplessy JC (1986) Tyrrhenian Sea tephrochronology of the oxigen isotope record for the past 60 000 years. Mar Geol 72:259–285

    Google Scholar 

  • Paterne M, Guichard F, Labeyrie J (1988) Explosive activity of the South Italian volcanoes during the past 80 000 years as determined by marine tephrochronology. J Volcanol Geotherm Res 34:153–172

    Google Scholar 

  • Potter PE, Pettijohn FJ (1963) Paleocurrents and basin analysis. Springer-Verlag, Berlin, pp 1–296

    Google Scholar 

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15

    Google Scholar 

  • Rittmann A, Vighi L, Falini F, Ventriglia V, Nicotera P (1950) Rilevamento geologico dei Campi Flegrei. Boll Soc Geol It 69:117–362

    Google Scholar 

  • Rosi M, Sbrana A (Editors) (1987) The Phlegrean Fields. CNR Quad Ric Sci 114(9):1–175

  • Rosi M, Sbrana A, Principe C (1983) The Phlegrean Fields structural evolution, volcanic history and eruptive mechanisms. J Volcanol Geotherm Res 17:273–288

    Google Scholar 

  • Scandone R, Bellucci F, Lirer L, Rolandi G (1991) The structure of the Campanian Plain and the activity of the Neapolitan volcanoes (Italy). J Volcanol Geotherm Res 48(1/2):1–31

    Google Scholar 

  • Scarpati C (1990) Stratigrafia, geochimica e dinamica eruttiva del Tufo Giallo Napoletano. Ph D Thesis, University of Naples, pp 1–159

  • Scherillo A (1955) Petrografia chimica dei tufi flegrei 2 tufo giallo, mappamonte, pozzolana. Rend Acc Sc Fis Mat 22:317–330

    Google Scholar 

  • Scherillo A, Franco E (1967) Introduzione alla carta stratigrafica del suolo di Napoli. Atti Acc Pont Napoli, 16:27–37

    Google Scholar 

  • Self S (1983) Large-scale phreatomagmatic silicic volcanism: a case study from New Zealand. J Volcanol Geotherm Res 17:433–469

    Google Scholar 

  • Self S, Sparks RSJ (1978) Characteristics of wide-spread pyroclastic deposits formed by interaction of silicic magma and water. Bull Volcanol 41:196–211

    Google Scholar 

  • Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Phil Trans R Soc London 299:241–273

    Google Scholar 

  • Walker GPL (1971) Grain-size characteristics of pyroclastic deposits. J Geol 79:696–714

    Google Scholar 

  • Walker GPL (1973) Explosive volcanic eruptions — a new classification scheme. Geol Rund 62:431–446

    Google Scholar 

  • Walker GPL (1981) Characteristics of two phreatoplinian ashes, and their water flushed origin. J Volcanol Geotherm Res 9:395–407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarpati, C., Cole, P. & Perrotta, A. The Neapolitan Yellow Tuff — A large volume multiphase eruption from Campi Flegrei, Southern Italy. Bull Volcanol 55, 343–356 (1993). https://doi.org/10.1007/BF00301145

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00301145

Key words

Navigation