Skip to main content

Advertisement

Log in

El Ventorrillo, a paleostructure of Popocatépetl volcano: insights from geochronology and geochemistry

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Volcán Popocatépetl (México) was constructed over the remains of a volcanic paleostructure. Based on fieldwork, 40Ar/39Ar dating, U-Pb dating, and geochemistry, we have determined the age, chemistry, and location of this paleostructure and named it El Ventorrillo. Most remnants of El Ventorrillo are covered by deposits from subsequent activity of Popocatépetl, except for the El Abanico scarp and the Barranca de Nexpayantla, where the stratigraphy of El Ventorrillo eruptive products can be investigated. Inception of volcanism at El Ventorrillo occurred at 331 ± 10 ka with emission of the Nexpayantla andesitic lavas, and continued with extrusion of the Yoloxochitl (267 ± 31 ka) and microwave (227 ± 6 ka) domes. Intrusion of dikes occurred at 298 ± 94 and 230 ± 3 ka. Activity at El Ventorrillo continued with the emission of lavas that built the El Abanico scarp (193 ± 29 to 96 ± 8 ka) and continued until the Tutti Frutti eruption destroyed the cone 14.1 kyr ago. El Ventorrillo magmas produced rocks divided into two mineralogical groups. The first group contains biotite-amphibole-rich rocks and the second group consists of biotite-amphibole-free lavas. The rocks that contain biotite and amphibole are older than 198 ± 13 ka, whereas the rocks with no hydrous phases are younger than 227 ± 6 ka and contain skarn and granodiorite xenoliths. We interpret the change to an anhydrous mineral assemblage and the occurrence of skarn and granodiorite xenoliths as evidence for the formation of a new, shallower reservoir. A granodiorite xenolith was chosen for 40Ar/39Ar dating and U-Pb zircon analyses. The U-Pb method yielded an age of 540 ± 110 ka and the 40Ar/39Ar an age of 109 ± 24 ka. These ages are interpreted to indicate granodiorite crystallization (540 ± 110 ka), which metamorphosed the calcareous basement beneath Popocatépetl into skarn and an influx of magma (109 ± 24 ka) that reheated the granodiorite. Major and trace elements, Sr, Nd, and Pb isotopic compositions, and textural analyses of plagioclase show that El Ventorrillo magmas were moderately modified by mixing with more-mafic magmas and that assimilation of the calcareous basement was negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andersen T (2002) Correction of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79

    Article  Google Scholar 

  • Andrews BJ, Gardner JE, Housh TB (2008) Repeated recharge, assimilation, and hybridization in magmas erupted from El Chichon as recorded by plagioclase and amphibole phenocrysts. J Volcanol Geotherm Res 175:415–426

    Article  Google Scholar 

  • Arana-Salinas L, Siebe C, Macías JL (2010) Dynamics of the ca. 4965 14C yr BP “Ochre Pumice” Plinian eruption of Popocatépetl volcano, México. J Volcanol Geotherm Res 192:212–231

    Article  Google Scholar 

  • Arce JL, Layer PW, Morales-Cacique E, Benowitz JA, Rangel E, Escolero O (2013) The San Lorenzo Tezonco deep well, on the basis of 40Ar/39Ar geochronology and whole-rock chemistry. J Volcanol Geotherm Res 266:34–49

    Article  Google Scholar 

  • Atlas ZD, Dixon JE, Sen G, Finny M, Martin-Del Pozzo AL (2006) Melt inclusions from Volcan Popocatépetl and Volcan de Colima, Mexico: melt evolution due to vapor-saturated crystallization during ascent. J Volcanol Geotherm Res 153:221–240

    Article  Google Scholar 

  • Belousov A, Belousova M, Voight B (1999) Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 61:324–342

    Article  Google Scholar 

  • Cabral-Cano E, Lang HR, Harrison CGA (2000) Stratigraphic assessment of the Arcelia-Teloloapan area, southern Mexico: implications for southern Mexico’s post-Neocomian tectonic evolution. J S Am Earth Sci 13:443–457

    Article  Google Scholar 

  • Cadoux A, Yves M, Martínez-Serrano RG, Guillou H (2011) Trenchward Plio-Quaternary volcanism migration in the Trans-Mexican Volcanic Belt: the case of the Sierra Nevada range. Geol Mag 1–15

  • Carrasco G, Silva L, Delgado H, Urrutia-Fucugauchi J (1986) Geología y paleomagnetismo del Popocatépetl. Comunicaciones técnicas. Serie Investigación Instituto de Geofísica, UNAM. No 33.

  • Chertkoff DG, Gardner JE (2004) Nature and timing of magma interactions before, during, and after the caldera-forming eruption of Volcán Ceboruco, Mexico. Contrib Mineral Petrol 146:715–735

    Article  Google Scholar 

  • Costa F, Chakraborty S, Dohmen R (2003) Diffusion coupling between trace and major elements and a model for calculation of magma residence times using plagioclase. Geochim Cosmochim Acta 67:2189–2200

    Article  Google Scholar 

  • Couch S, Sparks RSJ, Carroll MR (2001) Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature 411:1037–1039

    Article  Google Scholar 

  • Crandell DR, Miller CD, Glicken H, Christiansen RL, Newhall CG (1984) Catastrophic debris avalanche from ancestral Mount Shasta volcano, California. Geology 12:143–146

    Article  Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202

    Article  Google Scholar 

  • Espinasa-Pereña R, Martín-Del Pozzo AL (2006) Morphostratigraphic evolution of Popocatépetl volcano, México. GSA Special papers 402, 115–137

  • Esser RP, Mcintosh WC, Heizler MT, Kyle PR (1997) Excess argon in melt inclusions in zero-age anorthoclase feldspar from Mt. Erubus Antartica, as revealed by the 40Ar/39Ar method. Geochim Cosmochim Acta 61:3789–3801

    Article  Google Scholar 

  • Fries D Jr (1960) Geología del estado de Morelos y partes adyacentes de México y Guerrero, región centro meridional de México. Boletín del Instituto de Geología, UNAM 60:206–236

    Google Scholar 

  • Fries D Jr (1965) Hoja Cuernavaca con resumen de la geología del estado de Morelos. Instituto de Geología, UNAM

  • Garcia MO, Jacobson SS (1979) Crystal clots, amphibole fraction, and the evolution of calc-alkaline magmas. Contrib Mineral Petrol 69:319–327

    Article  Google Scholar 

  • Gardner JE, Tait S (2000) The caldera-forming eruption of Volcán Ceboruco, Mexico. Bull Volcanol 62:20–33

    Article  Google Scholar 

  • Gardner JE, Rutherford M, Carey S, Sigurdsson H (1995) Experimental constraints on pre-eruptive water contents and changing magma storage prior to explosive eruptions of Mount St. Helens volcano. Bull Volcanol 57:1–17

    Article  Google Scholar 

  • Goff F, Love SP, Warren RG, Counce D, Obenholzner J, Siebe C, Schmidt SC (2001) Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatépetl volcano, México. Chem Geol 177:133–156

    Article  Google Scholar 

  • Guillong M, von Quadt A, Sakata S, Peytcheva I, Bachmann O (2014) LA-ICP-MS Pb–U dating of young zircons from the Kos–Nisyros volcanic centre, SE Aegean arc. J Anal Atom 29(6):963–970

    Article  Google Scholar 

  • Johnson CA (1990) Stratigraphy and structure of the San Lucas area, Michoacán and Guerrero Status, Southwestern Mexico, Coral Gables, Florida. Dissertation, University of Miami, U.S.A

    Google Scholar 

  • Jones DA, Layer PW, Newberry RJ (2008) A 3100-year history of argon isotopic and compositional variation at El Chichón Volcano. J Volcanol Geotherm Res 175:427–443

    Article  Google Scholar 

  • Layer PW (2000) Argon-40/argon-39 age of the El’gygytgyn impact event, Chukotka, Russia. Meteroit Planet Sci 35:591–599

    Article  Google Scholar 

  • Layer PW, Gardner JE (2001) Excess argon in Mount St. Helens plagioclase as a recorder of magmatic processes. Geophys Res Lett 28:4279–4282

    Article  Google Scholar 

  • Layer PW, Hall CM, York D (1987) The derivation of 40Ar/39Ar age spectra of single grains of hornblende and biotite by laser step heating. Geophys Res Lett 14:757–776

    Article  Google Scholar 

  • Lozano R, Bernal JP (2005) Characterization of a new set of eight geochemical reference materials for XRF major and race element analysis. Rev Mex Cien Geol 22(3):329–344

    Google Scholar 

  • Ludwig KR (2008) User’s manual for Isoplot 3.6: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication

  • Ludwig KR, Mundil R (2002) Extracting reliable U-Pb ages and errors from complex populations of zircons from Phanerozoic tuffs. Goldschmidt Conference Abstracts A463, Davos Switzerland

  • Macías JL, Arce JL, García-Tenorio F, Layer PW, Rueda H, Reyes-Agustín G, López-Pizaña F, Avellán D (2012) Geology and geochronology of Tlaloc, Telapón, Iztaccíhuatl, and Popocatépetl volcanoes, Sierra Nevada, central Mexico. Geol Soc Am Bull 25

  • McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, New York

    Google Scholar 

  • Meriggi L, Macías JL, Tommasini S, Capra L, Conticelli S (2008) Heterogeneous magmas of the Quaternary Sierra Chichinautzin volcanic field (Central México): the role of an amphibole-bearing mantle and magmatic evolution processes. Rev Mex Ciencias Geol 25:197–206

    Google Scholar 

  • Mooser F, Meyer-Abich H, McBirney A (1958) Catalogue of active volcanoes of the world, part VI, Central America. International Volcanology Association, Italy

    Google Scholar 

  • Mooser FM, Nairn AEM, Negendank JFW (1974) Paleomagnetic investigations of the Tertiary and Quaternary igneous rocks: VIII. A paleomagnetic and petrologic study of volcanics of the Valley of Mexico. Geogr Rundsch 63:451–483

    Article  Google Scholar 

  • Morse SA (1984) Cation diffusion in plagioclase feldspar. Science 225:504–504

    Article  Google Scholar 

  • Nixon GT, Pearce TH (1987) Laser-interferometry study of oscillatory zoning plagioclase: the record of magma mixing and phenocryst recycling in calc-alkaline magma chambers, Iztaccíhuatl volcano, Mexico. Am Mineral 72:1144–1162

    Google Scholar 

  • Panfil MS, Gardner TW, Hirth KG (1999) Late Holocene stratigraphy of the Tetimpa archaeological sites, northeast flank of Popocatepetl volcano, central Mexico. Geol Soc Am Bull 111(2):204–218

    Article  Google Scholar 

  • Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geoph Geosys 11, Q0AA06. doi:10.1029/2009GC002618

  • Pearce TH, Kolisnik AM (1990) Observation of plagioclase zoning using interference imaging. Earth Sci Rev 29:9–26

    Article  Google Scholar 

  • Pérez-Cruz GA (1988) Estudio sismológico de reflexión del subsuelo de la Ciudad de México. Universidad Nacional Autónoma de México, Dissertation

    Google Scholar 

  • Petrus JA, Kamber BS (2012) VizualAge: a novel approach to laser ablation ICP-MS u-Pb geochronology data reduction. Geostand Geoanal Res 36:247–270

    Article  Google Scholar 

  • Renne PR, Deino AL, Hames WE, Heizler MT, Hemming SR, Hodges KV, Koppers AAP, Mark DF, Morgan LE, Phillips D, Singer BS, Turrin BD, Villa IM, Villenueve M, Wijbrans JR (2009) Data reporting norms for 40Ar/39Ar geochronology. Quat Geochronol 4(5):346–352

    Article  Google Scholar 

  • Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349–5367

    Article  Google Scholar 

  • Roberge J, Delgado-Granados H, Wallace PJ (2009) Mafic magma recharge supplies high COand SO2 gas fluxes from Popocatépetl volcano, Mexico. Geology 37, 107–110

  • Robin C (1984) Le Volcan Popocatépetl (Mexique): structure, evolution petrologique et risques. Bull Volcanol 47:1–23

    Article  Google Scholar 

  • Robin C, Boudal C (1987) A gigantic Bezymianny-type event at the beginning of modern volcan Popocatépetl. J Volcanol Geotherm Res 31:115–130

    Article  Google Scholar 

  • Rutherford MJ, Devine JD (2003) Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995–2001 Soufriere Hills magma. J Petrol 44:1433–1454

    Article  Google Scholar 

  • Rutherford MJ, Sigurdsson H, Carey S, Davis A (1985) The May 18, 1980 eruption of Mount St. Helens; melt composition and experimental phase equilibria. J Geophys Res 90:2929–2947

    Article  Google Scholar 

  • Schaaf P, Stimac J, Siebe C, Macias JL (2005) Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatepetl and surrounding monogenetic volcanoes, central Mexico. J Petrol 46:1243–1282

    Article  Google Scholar 

  • Siebe C, Abrams M, Macías J (1995) Derrumbes Gigantes, Depositos de avalancha de escombros y edad del actual cono del volcán Popocatépetl en Volcan Popocatépetl. Estudios Realizados Durante la crisis de 1994–1995. Centro Nacional de Prevención de desastres de la Secretaria de Gobernación-UNAM, México

    Google Scholar 

  • Siebe C, Abrams M, Macías JL, Obenholzner J (1996) Repeated volcanic disasters in prehispanic time at Popocatépetl, central Mexico: past key to the future? Geology 24:399–402

    Article  Google Scholar 

  • Siebe C, Rodríguez-Lara V, Schaaf P, Abrams M (2004) Geochemistry, Sr-Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa and Chichnautzin scoria cones, south of Mexico City. J Volcanol Geotherm Res 130:197–226

    Article  Google Scholar 

  • Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197

    Article  Google Scholar 

  • Siebert L, Glicken H, Ui T (1987) Volcanic hazards from Bezymianny- and Bandai-type eruptions. Bull Volcanol 49:435–459

    Article  Google Scholar 

  • Slama J, Kosler J, Condon D, Crowley J, Gerdes A, Hanchar J, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Article  Google Scholar 

  • Solari LA, Gómez-Tuena A, Bernal JP, Pérez-Arvizu O, Tanner M (2010) U-Pb zircon geochronology with an integrated LA-ICP-MS microanalytical workstation: achievements in precision and accuracy. Geostand Geoanal Res 34(1):5–18

    Article  Google Scholar 

  • Sosa-Ceballos G (2003) Variaciones geoquímico-temporales y perfil isotópico de Sr, Nd y Pb del Volcán Popocatépetl. Bachelor Thesis, National Autonomous University of Mexico

  • Sosa-Ceballos G, Gardner JE, Siebe C, Macias JL (2012) A caldera-forming eruption ~14100 14C yr BP at Popocatépetl volcano, México. Insights from eruption dynamics and magma mixing. J Volcanol Geothem Res 213–214:27–40

    Article  Google Scholar 

  • Sosa-Ceballos G, Gardner JE, Lassiter J (2014) Magma evolution during 23 ky of explosive eruptions at Popocatepetl volcano, Mexico. Insights from experimental petrology, Sr-Nd isotopes, and compositional variability in plagioclase. Contrib Mineraland Petrology 167:966

    Article  Google Scholar 

  • Straub SM, Martin Del-Pozzo AL (2001) The significance of phenocrysts diversity in tephra from recent eruptions at Popocatépetl volcano (central Mexico). Contrib Mineral Petrol 140:487–510

    Article  Google Scholar 

  • Tepley FJ, Davidson JP, Tilling RI, Arth JG (2000) Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichon volcano, Mexico. J Petrol 41:1397–1411

    Article  Google Scholar 

  • Tsuchiyama A (1985) Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite and origin of dusty plagioclase in andesite. Contrib Mineral Petrol 89:1–16

    Article  Google Scholar 

  • Ui T, Yamamoto H, Susuky-Kamata K (1986) Characterization of debris avalanche deposits in Japan. J Volcanol Geotherm Res 29:231–243

    Article  Google Scholar 

  • Witter JB, Kress VC, Newhall CG (2005) Volcán Popocatépetl, México. Petrology, magma mixing, and immediate sources of volatiles for the 1994-present eruption. J Petrol 46:2337–2366

    Article  Google Scholar 

  • York D, Hall CM, Yanase Y, Hanes JA, Kenyon WJ (1981) 40Ar/39Ar dating of terrestrial minerals with a continuous laser. Geophys Res Lett 8:1136–1138

    Article  Google Scholar 

  • Zellmer GF, Blake S, Vance D, Hawkesworth C, Turner S (1999) Plagioclase residence times at two island arc volcanoes (Kamenei islands, Santorini, and Soufriere, St Vincent) determined by Sr diffusion systematics. Contrib Mineral Petrol 136:345–357

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by Conacyt Project No. 32330-T and DGAPA-PAPIIT IN109202 to P.S., DGAPA-PAPIIT IA100414 to G.S.C., and FOPREDEN to J.L.M. We thank Guillermo Cisneros for the image processing; Carlos Ortega-Obregón for LA-ICP-MS U-Pb determinations at the Laboratorio de Estudios Isotópicos, Centro de Geociencias, UNAM; and Julie Roberge for her permission to use unpublished melt inclusion Rb data. We thank Richard Price, Benjamin Cohen, and Paul Wallace for their helpful and constructive comments during the review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sosa-Ceballos.

Additional information

Editorial responsibility: P. Wallace

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(xlsx 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosa-Ceballos, G., Macías, J.L., García-Tenorio, F. et al. El Ventorrillo, a paleostructure of Popocatépetl volcano: insights from geochronology and geochemistry. Bull Volcanol 77, 91 (2015). https://doi.org/10.1007/s00445-015-0975-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0975-2

Keywords

Navigation