Skip to main content
Log in

Wing morphology, winter ecology, and fecundity selection: evidence for sex-dependence in barn swallows (Hirundo rustica)

  • Behavioral ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Variation in wing morphology results from the combination of diverse selection pressures. Wing feather morphology within species varies with sex and ontogenetic effects, and also with ecological factors. Yet, the direction of causation for the wing morphology–ecology association remains to be elucidated. Under the ‘ecology-dependence’ hypothesis, wing morphology covaries with ecological conditions, because the latter affect feather molt. Alternatively, the ‘habitat choice’ hypothesis posits that individuals with different wing morphology choose different habitats because of the habitat-dependent advantages of a specific wing morphology. We tested these competing hypotheses in the migratory, aerially insectivorous barn swallow (Hirundo rustica). We quantified wing morphology (isometric size, pointedness, and convexity) on the same individuals during consecutive breeding seasons (i.e., before and after molt in sub-Saharan wintering areas) and located wintering areas using light-level geolocators. Wing pointedness of females but not males during 1 year negatively correlated with vegetation vigor (gauged by the Normalized Difference Vegetation Index; NDVI) in the African area where individuals spent the next winter. Partial least-squares path modelling showed that the association between wing morphology and NDVI was sex-dependent. Conversely, NDVI during wintering did not predict wing morphology in the next breeding season. Because wing morphology can have carry-over effects on subsequent performance, we investigated selection on wing traits and found strong positive fecundity selection on wing size of females. Our results suggest that female barn swallows choose their wintering habitat depending on their wing morphology. In addition, directional fecundity selection operates on females, suggesting sex-dependence of current selection on the flight apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alatalo RV, Gustafsson L, Lundberg A (1984) Why do young passerine birds have shorter wings than older birds? Ibis 126:410–415

    Article  Google Scholar 

  • Ambrosini R, Møller AP, Saino N (2009) A quantitative measure of migratory connectivity. J Theor Biol 257:203–211

    Article  PubMed  Google Scholar 

  • Andersson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Arnold SJ, Wade MJ (1984) On the measurement of natural and sexual selection: theory. Evolution 38:709–719

    Article  PubMed  Google Scholar 

  • Arroyo-Mora JP, Sanchez-Azofeifa GA, Kalacska MER, Rivard B, Calvo-Alvarado JCO, Janzen DH (2005) Secondary forest detection in a Neotropical dry forest landscape using Landsat 7 ETM+ and IKONOS imagery. Biotropica 34:497–507

    Article  Google Scholar 

  • Baldwin MW, Winkler H, Organ CL, Helm B (2010) Wing pointedness associated with migratory distance in common-garden and comparative studies of stonechats (Saxicola torquata). J Evol Biol 23:1050–1063

    Article  CAS  PubMed  Google Scholar 

  • Berthold P (1996) Control of bird migration. Chapman & Hall, London

    Google Scholar 

  • Boone RB, Galvin KA, Smith NM, Lynn SJ (2000) Generalizing El Niño effects upon Maasai livestock using hierarchical clusters of vegetation patterns. Photogr Eng Remote Sens 6:737–744

    Google Scholar 

  • Brewer ML, Hertel F (2007) Wing morphology and flight behavior of Pelecaniform seabirds. J Morphol 268:866–877

    Article  PubMed  Google Scholar 

  • Burns JG, Ydenberg RC (2002) The effects of wing loading and gender on the escape flights of least sandpipers (Calidris minutilla) and western sandpipers (Calidris mauri). Behav Ecol Sociobiol 52:128–136

    Article  Google Scholar 

  • Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62:241–252

    Article  Google Scholar 

  • Carrascal LM, Senar JC, Mozetich I, Uribe F, Domenech J (1998) Interactions among environmental stress, body condition, nutritional status, and dominance in Great tits. Auk 115:727–738

    Article  Google Scholar 

  • Corman AM, Bairlein F, Schmalijohann H (2014) The nature of the migration route shapes physiological traits and aerodynamic properties in a migratory songbird. Behav Ecol Sociobiol 68:391–402

    Article  Google Scholar 

  • Cramp S (1998) The complete birds of the western palearctic on CD-ROM. Oxford University Press, Oxford

    Google Scholar 

  • de la Hera I, Pulido F, Visser ME (2014) Longitudinal data reveal ontogenetic changes in the wing morphology of a long-distance migratory bird. Ibis 156:209–214

    Article  Google Scholar 

  • Delingat J, Hobson KA, Dierschke V, Schmaljohann H, Bairlein F (2011) Morphometrics and stable isotopes differentiate populations of Northern Wheatears (Oenanthe oenanthe). J Ornithol 152:383–395

    Article  Google Scholar 

  • Desrochers A (2010) Morphological response of songbirds to 100 years of landscape change in North America. Ecology 91:1577–1582

    Article  CAS  PubMed  Google Scholar 

  • Fernández G, Lank DB (2007) Variation in the wing morphology of Western Sandpipers (Calidris mauri) in relation to sex, age class, and annual cycle. Auk 124:1037–1046

    Article  Google Scholar 

  • Fiedler W (2005) Ecomorphology of the external flight apparatus of blackcaps (Sylvia atricapilla) with different migration behaviour. Ann N Y Acad Sci 1046:253–263

    Article  PubMed  Google Scholar 

  • Fudickar AM, Partecke J (2012) The flight apparatus of migratory and sedentary individuals of a partially migratory songbird species. PLoS One 7:e51920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamauf A, Preleuthner M, Winkler H (1998) Philippine birds of prey: interrelations among habitat, morphology, and behavior. Auk 115:713–726

    Article  Google Scholar 

  • Ginn HB, Melville DS (1983) Moult in birds. British Trust for Ornithology, Norfolk

    Google Scholar 

  • Grubb TC Jr (1991) A deficient diet narrows growth bars on induced feathers. Auk 108:725–727

    Article  Google Scholar 

  • Hansen MC, Defries RS, Townshend JRG, Sohlberg R (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21:1331–1364

    Article  Google Scholar 

  • Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S (2011) Carry-over effects as drivers of fitness differences in animals. J Anim Ecol 80(1):4–18

    Article  PubMed  Google Scholar 

  • Hartter J, Lucas C, Gaughan AE, Aranda LL (2008) Detecting tropical dry forest succession in a shifting cultivation mosaic of the Yucatán Peninsula, Mexico. Appl Geogr 28:134–149

    Article  Google Scholar 

  • Hedenström A (2003) Flying with holey wings. J Avian Biol 34:324–327

    Article  Google Scholar 

  • Hedenström A, Møller AP (1992) Morphological adaptations to song flight in passerine birds: a comparative study. Proc R Soc Lond B 247:183–187

    Article  Google Scholar 

  • Jenkins KD, Hawley DM, Farabaugh CS, Cristol DA (2001) Ptilochronology reveals differences in condition of captive White-throated Sparrows. Condor 103:579–586

    Article  Google Scholar 

  • Jenni L, Winkler R (1994) Moult and ageing of European passerines. Academic Press, London

    Google Scholar 

  • Kaboli M, Aliabadian M, Guillaumet A, Roselaar CS, Prodon R (2007) Ecomorphology of the wheatears (genus Oenanthe). Ibis 149:792–805

    Article  Google Scholar 

  • Kalacska MER, Sánchez-Azofeifa GA, Calvo-Alvarado JC, Rivard B, Quesada M (2005) Effects of season and successional stage on leaf area index and spectral vegetation indices in three Mesoamerican tropical dry forests. Biotropica 37:486–496

    Article  Google Scholar 

  • Koehl MAR (1996) When does morphology matter? Ann Rev Ecol Syst 27:501–542

    Article  Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    Article  PubMed  Google Scholar 

  • Leisler B, Winkler H (1985) Ecomorphology. Curr Ornithol 2:155–186

    Article  Google Scholar 

  • Liang S (2001) Land-cover classification methods for multi-year AVHRR data. Int J Remote Sens 22:1479–1493

    Article  Google Scholar 

  • Liechti F, Scandolara C, Rubolini D, Ambrosini R, Korner-Nievergelt F, Hahan S, Lardelli R, Romano M, Caprioli M, Romano A, Sicurella B, Saino N (2015) Timing of migration and residence areas during the non-breeding period of barn swallows Hirundo rustica in relation to sex and population. J Avian Biol 46:254–265

    Article  Google Scholar 

  • Lindström A, Visser GH, Daan S (1993) The energetic cost of feather synthesis is proportional to basal metabolic rate. Physiol Zool 66:490–510

    Article  Google Scholar 

  • Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S (2012) Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol Evol 3:603–612

    Article  Google Scholar 

  • Lockwood R, Swaddle JP, Rayner JMV (1998) Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration. J Avian Biol 29:273–292

    Article  Google Scholar 

  • Marchetti K, Price T, Richman A (1995) Correlates of wing morphology with foraging behaviour and migration distance in the genus Phylloscopus. J Avian Biol 26:177–181

    Article  Google Scholar 

  • Mishra NB, Crews KA, Miller JA, Meyer T (2015) Mapping vegetation morphology types in southern Africa savanna using MODIS time-series metrics: a case study of central Kalahari, Botswana. Land 4:197–215

    Article  Google Scholar 

  • Møller AP (1994) Sexual selection and the barn swallow. Oxford University Press, Oxford

    Google Scholar 

  • Møller AP, de Lope F, Saino N (1995) Sexual selection in the barn swallow Hirundo rustica. VI. Aerodynamic adaptations. J Evol Biol 8:671–687

    Article  Google Scholar 

  • Møller AP, Chabi Y, Cuervo JJ, de Lope F, Kilpimaa J, Kose M, Matiyjasiak P, Pap PL, Saino N, Sakraoui R, Schifferli L, von Hirschheydt J (2006) An analysis of continent-wide patterns of sexual selection in a passerine bird. Evolution 40:856–868

    Article  Google Scholar 

  • Møller AP, Balbontín J, Cuervo JJ, Hermosell IG, de Lope F (2009) Individual differences in protandry, sexual selection, and fitness. Behav Ecol 20:433–440

    Article  Google Scholar 

  • Møller AP, Vagasi CI, Pap PL (2013) Risk-taking and the evolution of mechanisms for rapid escape from predators. J Evol Biol 26:1143–1150

    Article  PubMed  Google Scholar 

  • Mönkkönen M (1995) Do migrant birds have more pointed wings? A comparative study. Evol Ecol 9:520–528

    Article  Google Scholar 

  • Murphy ME (1996) Energetics and nutrition in molt. In: Carey C (ed) Avian energetics and nutritional ecology. Chapman and Hall, London, pp 158–198

    Chapter  Google Scholar 

  • Neto JM, Gordinho L, Belda EJ, Marín M, Monrós JS, Fearon P, Crates R (2013) Phenotypic divergence among West European populations of reed bunting Emberiza schoeniclus: the effects of migratory and foraging behaviours. PLoS One 8:e63248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norberg UM (1990) Vertebrate flight. Springer, Heidelberg

    Book  Google Scholar 

  • Norberg UM (2002) Structure, form and function of flight in engineering and the living world. J Morphol 252:52–81

    Article  Google Scholar 

  • Norris DR, Marra PP, Kyser TK, Sherry TW, Ratcliff LM (2004) Tropical winter habitat limits reproductive success on temperate breeding grounds of a migratory bird. Proc R Soc Lond B 271:59–64

    Article  Google Scholar 

  • Pennycuick CJ (1975) Mechanics of flight. In: Farner DS, King JR (eds) Avian biology, vol 5. Academic Press, London, pp 1–75

    Google Scholar 

  • Penteriani V, Rutz C, Kenward R (2013) Hunting behaviour and breeding performance of northern Goshawks Accipiter gentilis, in relation to resource availability, sex, age and morphology. Naturwissenschaften 100:935–942

    Article  CAS  PubMed  Google Scholar 

  • Perez-Tris J, Tellerıa JL (2001) Age-related variation in wing shape of migratory and sedentary Blackcaps Sylvia atricapilla. J Avian Biol 32:207–213

    Article  Google Scholar 

  • Pettorelli N, Ryan S, Mueller T, Bunnefeld N, Jedrzejewska B, Lima M, Kausrud K (2011) The normalized difference vegetation index (NDVI): unforeseen successes in animal ecology. Clim Res 46:15–27

    Article  Google Scholar 

  • Piersma T, Perez-Tris J, Mouritsen H, Bauchinger U, Bairlein F (2005) Is there a “migratory syndrome” common to all migrant birds? Ann N Y Acad Sci 1046:282–293

    Article  PubMed  Google Scholar 

  • Ramakrishna N, Running S (1997) Land cover characterization using multitemporal red, near-IR, and thermal-IR data from NOAA/AVHRR. Ecol Appl 7:79–90

    Article  Google Scholar 

  • Rayner JMV (1988) Form and function in avian flight. Curr Ornithol 5:1–66

    Google Scholar 

  • Read JM, Lam NS-M (2002) Spatial methods for characterizing land cover and detecting land-cover changes for the tropics. Int J Remote Sens 23:2457–2474

    Article  Google Scholar 

  • Rolshausen G, Segelbacher G, Hobson KA, Schaefer HM (2009) Contemporary evolution of reproductive isolation and phenotypic divergence in sympatry along a migratory divide. Curr Biol 19:2097–2101

    Article  CAS  PubMed  Google Scholar 

  • Rubolini D, Spina F, Saino N (2004) Protandry and sexual dimorphism in trans-Saharan migratory birds. Behav Ecol 15:592–601

    Article  Google Scholar 

  • Saino N, Ambrosini R, Martinelli R, Calza S, Møller AP (2002) Mate fidelity, senescence in breeding performance and reproductive trade-offs in the barn swallow. J Anim Ecol 71:309–319

    Article  Google Scholar 

  • Saino N, Martinelli R, Romano M, Møller AP (2003) High heritable variation of a male secondary sexual character revealed by extra-pair fertilization in the barn swallow. Ital J Zool 70:167–174

    Article  Google Scholar 

  • Saino N, Szép T, Ambrosini R, Romano M, Møller AP (2004a) Ecological conditions during winter affect sexual selection and breeding in a migratory bird. Proc R Soc Lond B 271:681–686

    Article  Google Scholar 

  • Saino N, Szép T, Romano M, Rubolini D, Spina F, Møller AP (2004b) Ecological conditions during winter predict arrival date at the breeding quarters in trans-Saharan migratory bird. Ecol Lett 7:21–25

    Article  Google Scholar 

  • Saino N, Romano M, Ambrosini R, Rubolini D, Boncoraglio G, Caprioli M, Romano A (2012a) Longevity and lifetime reproductive success of barn swallow offspring are predicted by their hatching date and phenotypic quality. J Anim Ecol 81:1004–1012

    Article  PubMed  Google Scholar 

  • Saino N, Romano M, Caprioli M, Ambrosini R, Rubolini D, Scandolara C, Romano A (2012b) A ptilochronological study of carry-over effects of conditions during wintering on breeding performance in the barn swallow. J Avian Biol 43:513–524

    Article  Google Scholar 

  • Saino N, Romano M, Caprioli M, Lardelli R, Micheloni P, Scandolara C, Rubolini D, Fasola M (2013) Molt, feather growth rate and body condition of male and female Barn Swallows. J Ornithol 154:537–547

    Article  Google Scholar 

  • Saino N, Rubolini D, Ambrosini R, Romano M, Scandolara C, Fairhust GD, Caprioli M, Romano A, Sicurella B, Liechti F (2015) Light-level geolocators reveal covariation between winter plumage molt and phenology in a trans-Saharan migratory bird. Oecologia 178:1105–1112

    Article  PubMed  Google Scholar 

  • Saino N, Ambrosini R, Caprioli M, Romano A, Romano M, Rubolini D, Scandolara C, Liechti F (2017) Sex-dependent carry-over effects on timing of reproduction and fecundity in a migratory bird. J Anim Ecol. doi:10.1111/1365-2656.12625

    PubMed  Google Scholar 

  • Sanchez G (2013) PLS path modeling with R. Trowchez Editions, Berkeley. http://www.gastonsanchez.com/PLS%20Path%20Modeling%20with%20R.pdf

  • Scandolara C, Rubolini D, Ambrosini R, Caprioli M, Hahn S, Liechti F, Romano A, Romano M, Sicurella B, Saino N (2014) Impact of miniaturized geolocators on barn swallow Hirundo rustica fitness traits. J Avian Biol 45:417–423

    Article  Google Scholar 

  • Swaddle JP, Lockwood R (2003) Wingtip shape and flight performance in the European starling Sturnus vulgaris. Ibis 145:457–464

    Article  Google Scholar 

  • Swaddle JF, Witter MS (1997) The effects of molt on the flight performance, body mass, and behavior of European starlings (Sturnus vulgaris): an experimental approach. Can J Zool 75:1135–1146

    Article  Google Scholar 

  • Tellería JL, Carbonell R (1999) Morphometric variation of five Iberian Blackcap Sylvia atricapilla populations. J Avian Biol 30:63–71

    Article  Google Scholar 

  • Turner A (2006) The barn swallow. T & AD Poyser, London

    Google Scholar 

  • Vanhooydonck B, Herrel A, Gabela A, Podos J (2009) Wing shape variation in the Medium Ground Finch (Geospiza fortis): an ecomorphological approach. Biol J Linn Soc 98:129–138

    Article  Google Scholar 

  • Warrick DR (1998) The turning- and linear-maneuvering performance of birds: the cost of efficiency for coursing insectivores. Canadian J Zool 76(6):1063–1079

    Article  Google Scholar 

  • White DW, Kennedy ED, Stouffer PC (1991) Feather regrowth in female European Starlings rearing broods of different sizes. Auk 108:889–895

    Google Scholar 

  • Winkler H, Leisler B (1992) On the ecomorphology of migrants. Ibis 134(s1):21–28

    Google Scholar 

  • Wood EM, Pidgeon AM, Radeloff VC, Keuler NS (2012) Image texture as a remotely sensed measure of vegetation structure. Remote Sens Environ 121:516–526

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the farmers who gave us permission to enter their property. We also thank several colleagues who commented on an earlier draft of the paper.

Author information

Authors and Affiliations

Authors

Contributions

NS, RA, MC, FL, AR, DR, and CS did the field work; NS, RA, and FL analyzed the data; NS and DR wrote the manuscript; the other authors provided editorial advice.

Corresponding author

Correspondence to Nicola Saino.

Additional information

Communicated by Oliver P. Love.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saino, N., Ambrosini, R., Caprioli, M. et al. Wing morphology, winter ecology, and fecundity selection: evidence for sex-dependence in barn swallows (Hirundo rustica). Oecologia 184, 799–812 (2017). https://doi.org/10.1007/s00442-017-3918-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3918-0

Keywords

Navigation