Skip to main content

Advertisement

Log in

Functional importance of avian seed dispersers changes in response to human-induced forest edges in tropical seed-dispersal networks

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Although seed-dispersal networks are increasingly used to infer the functioning of ecosystems, few studies have investigated the link between the properties of these networks and the ecosystem function of seed dispersal by animals. We investigate how frugivore communities and seed dispersal change with habitat disturbance and test whether relationships between morphological traits and functional roles of seed dispersers change in response to human-induced forest edges. We recorded interaction frequencies between fleshy fruited plants and frugivorous bird species in tropical montane forests in the Bolivian Andes and recorded functional bird traits (body mass, gape width and wing tip length) associated with quantitative (seed-removal rate) and qualitative (seed-deposition pattern) components of seed-dispersal effectiveness. We found that the abundance and richness of frugivorous birds were higher at forest edges. More fruits were removed and dispersed seeds were less clustered at edges than in the interior. Additionally, functional and interaction diversity were higher at edges than in the interior, but functional and interaction evenness did not differ. Interaction strength of bird species increased with body mass, gape width and wing tip length in the forest interior, but was not related to bird morphologies at forest edges. Our study suggests that increases in functional and interaction diversity and an even distribution of interaction strength across bird morphologies lead to enhanced quantity and tentatively enhanced quality of seed dispersal. It also suggests that the effects of species traits on ecosystem functions can vary along small-scale gradients of human disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberti LF, Morellato LPC (2010) Variation on fruit production of Nectandra megapotamica (Lauraceae) trees on the edge and interior of a semideciduous forest—a case study. Naturalia 33:57–68

    Google Scholar 

  • Baayen RH, Davidson DJ, Bates DM (2008) Mixed-effects modeling with crossed random effects for subjects and items. J Mem Lang 59:390–412

    Article  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593

    Article  Google Scholar 

  • Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433

    Article  PubMed  CAS  Google Scholar 

  • Böhning-Gaese K, Caprano T, van Ewijk K, Veith M (2006) Range size: disentangling current traits and phylogenetic and biogeographic factors. Am Nat 167:555–567

    Article  PubMed  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Breitbach N, Tillmann S, Schleuning M, Grünewald C, Laube I, Steffan-Dewenter I, Böhning-Gaese K (2012) Influence of habitat complexity and landscape configuration on pollination and seed-dispersal interactions of wild cherry trees. Oecologia 168:425–437

    Article  PubMed  Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087

    Article  Google Scholar 

  • Carlo TA, Yang S (2011) Network models of frugivory and seed dispersal: challenges and opportunities. Acta Oecol 37:619–624

    Article  Google Scholar 

  • Chapin FS III, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D (1997) Biotic control over the functioning of ecosystems. Science 277:500–504

    Article  CAS  Google Scholar 

  • Clapham AR (1936) Over-dispersion in grassland communities and the use of statistical methods in plant ecology. J Ecol 24:232–251

    Article  Google Scholar 

  • de Castro ER, Cortes MC, Navarro L, Galetti M, Morellato LPC (2012) Temporal variation in the abundance of two species of thrushes in relation to fruiting phenology in the Atlantic rainforest. EMU Austral Ornithol 112:137–148

    Google Scholar 

  • Díaz-Castelazo C, Guimarāes PR, Jordano P, Thompson JN, Marquis RJ, Rico-Gray V (2010) Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology 91:793–801

    Article  PubMed  Google Scholar 

  • Dormann C, Fründ J, Blüthgen N, Gruber B (2009) Indices graphs and null models: analyzing bipartite ecological networks. Open Ecol J 2:7–24

    Article  Google Scholar 

  • Dunning JB (2007) CRC handbook of avian body masses, 2nd edn. CRC, Boca Raton, FL

    Book  Google Scholar 

  • Eck S, Fiebig J, Fiedler W, Heynen BI, Nicolai T, Töpfer RV, Elzen D, Winkler R, Woog F (2011) Measuring birds. Vögelvermessen Deutsche Ornithologen, Wilhelmshaven

    Google Scholar 

  • Eshiamwata GW, Berens DG, Bleher B, Dean WRJ, Böhning-Gaese K (2006) Bird assemblages in isolated Ficus trees in Kenyan farmland. J Trop Ecol 22:723–726

    Article  Google Scholar 

  • Galetti M, Alves-Costa CP, Cazetta E (2003) Effects of forest fragmentation, anthropogenic edges and fruit colour on the consumption of ornithocoric fruits. Biol Conserv 111:269–273

    Article  Google Scholar 

  • Galetti M, Guevara R, Côrtes MC, Fadini R, Von Matter S, Leite AB, Labecca F, Ribeiro T, Carvalho CS, Collevatti RG, Pires MM, Guimaraes PR Jr, Brancalion PH, Ribeiro MC, Jordano P (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090

    Article  PubMed  CAS  Google Scholar 

  • Gallegos CS, Hensen I, Schleuning M (2014) Secondary dispersal by ants promotes forest regeneration after deforestation. J Ecol 102:659–666

    Article  Google Scholar 

  • Gentry AH (1982) Patterns of Neotropical plant species diversity. Evol Biol 15:1–84

    Article  Google Scholar 

  • Hagen M, Kissling WD, Rasmussen C, De Aguilar Marcus AM, Brown LL, Carstensen DW, Alves-Dos Santos I, Dupont YL, Edwards FK, Genini J, Guimarães PR, Jenkins GD, Jordano P (2012) Biodiversity species interactions and ecological networks in a fragmented world. Adv Ecol Res 46:89–120

    Article  Google Scholar 

  • Haskell JP, Ritchie ME, Olff H (2002) Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges. Nature 418:527–530

    Article  PubMed  CAS  Google Scholar 

  • Hector A, Joshi J, Lawler S, Spehn EM, Wilby A (2001) Conservation implications of the link between biodiversity and ecosystem functioning. Oecologia 129:624–628

    Article  PubMed  CAS  Google Scholar 

  • Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251

    Article  Google Scholar 

  • Herrera JM, Morales JM, García D (2011) Differential effects of fruit availability and habitat cover for frugivore-mediated seed dispersal in a heterogeneous landscape. J Ecol 99:1100–1107

    Article  Google Scholar 

  • Herzog SK, Soria Auza RW, Hennessey B (2005) Patrones ecorregionales de riqueza, endemismo y amenaza de la avifauna boliviana: prioridades para la planificación ecorregional. Ecol Bol 40:27–40

    Google Scholar 

  • Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201–228

    Article  Google Scholar 

  • Jordano P (2000) Fruits and frugivory. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities, 2nd edn. CABI, Wallingford, pp 125–166

    Google Scholar 

  • Jordano P, García C, Godoy JA, García-Castaño JL (2007) Differential contribution of frugivores to complex seed dispersal patterns. Proc Natl Acad Sci 104:3278–3282

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jordano P, Forget PM, Lambert JE, Böhning-Gaese K, Traveset A, Wright SJ (2011) Frugivores and seed dispersal: mechanisms and consequences for biodiversity of a key ecological interaction. Biol Lett 7:321–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Junker RR, Blüthgen N, Brehm T, Binkenstein J, Paulus J, Martin Schaefer H, Stang M (2013) Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct Ecol 27:329–341

    Article  Google Scholar 

  • Karubian J, Browne L, Bosque C, Carlo T, Galetti M, Loiselle BA, Blake JG, Cabrera D, Durães R, Labecca FM, Hobrook KM, Holland R, Jetz W, Kümmenth F, Olivo J, Ottewell K, Papadakis G, Rivas G, Steiger S, Voirin B, Wikelski M (2012) Seed dispersal by Neotropical birds: emerging patterns and underlying processes. Ornitol Neotrop 23:9–24

    Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Lenz J, Fiedler W, Caprano T, Friedrichs W, Gaese BH, Wikelski M, Böhning-Gaese K (2011) Seed-dispersal distributions by trumpeter hornbills in fragmented landscapes. Proc R Soc B Biol Sci 278:2257–2264

    Article  Google Scholar 

  • Lippok D, Beck S, Renison D, Hensen I, Apaza A, Schleuning M (2013) Topography and edge effects are more important than elevation as drivers of vegetation patterns in a Neotropical montane forest. J Veg Sci 3:724–733

    Google Scholar 

  • Markl JS, Schleuning M, Forget PM, Jordano P, Lambert JE, Traveset A, Wright SJ, Böhning-Gaese K (2012) Meta-analysis of the effects of human disturbance on seed dispersal by animals. Conserv Biol 26:1072–1081

    Article  PubMed  Google Scholar 

  • Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richnessfunctional evenness and functional divergence : the primary components of functional diversity. Oikos 111:112–118

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Melo FPL, Lemire D, Tabarelli M (2007) Extirpation of large-seeded seedlings from the edge of a large Brazilian Atlantic forest fragment. Ecoscience 14:124–129

    Article  Google Scholar 

  • Menke S, Böhning-Gaese K, Schleuning M (2012) Plant-frugivore networks are less specialized and more robust at forest-farmland edges than in the interior of a tropical forest. Oikos 121:1553–1566

    Article  Google Scholar 

  • Morales JM, García D, Martínez D, Rodriguez-Pérez J, Herrera JM (2013) Frugivore behavioural details matter for seed dispersal: a multi-species model for Cantabrian thrushes and trees. PLoS ONE. doi:10.1371/journal.pone.0065216

    Google Scholar 

  • Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876

    Article  Google Scholar 

  • Navarro G, Maldonado M (2002) Geografía ecológica de Bolivia: vegetación y ambientes acuáticos, 3rd edn. Centro de Ecología Difusión Simón I, Patiño

    Google Scholar 

  • Perea R, Delibes M, Polko M, Suárez-Esteban A, Fedriani JM (2012) Context-dependent fruit-frugivore interactions: partner identities and spatio-temporal variations. Oikos 122:943–951

    Article  Google Scholar 

  • Plein M, Längsfeld L, Neuschulz EL, Schultheiß C, Ingmann L, Töpfer T, Böhning-Gaese K, Schleuning M (2013) Constant properties of plant–frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology 94:1296–1306

    Article  PubMed  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Santamaría L, Rodríguez-Gironés M (2007) Linkage rules for plant–pollinator networks: trait complementarity or exploitation barriers? PLoS Biol 5:354–362

    Article  Google Scholar 

  • Schawe M, Gerold G, Bach K, Gradstein S (2010) Hydrometeorological patterns in relation to montane forest types along an elevational gradient in the Yungas of Bolivia. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forest: science for conservation and management. Cambridge University Press, Cambridge, pp 199–207

  • Schleuning M, Blüthgen N, Flörchinger M, Braun J, Schaefer HM, Böhning-Gaese K (2011) Specialization and interaction strength in a tropical plant-frugivore network differ among forest strata. Ecology 92:26–36

    Article  PubMed  Google Scholar 

  • Schleuning M, Ingmann L, Strauß R, Fritz SA, Dalsgaard B, Dehling DM, Plein M, Saavedra F, Sandel B, Svenning JC, Böhning-Gaese K, Dormann CF (2014) Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol Lett 17:454–463

    Article  PubMed  Google Scholar 

  • Schulenberg TS, Stotz DF, Lane DF, O’Neill JP, Parker IIITA (2007) Birds of Peru. Princeton University Press, NJ, pp 5–656

    Google Scholar 

  • Schupp EW (1993) Quantity, quality and the effectiveness of seed dispersal by animals. Vegetatio 107(108):15–29

    Google Scholar 

  • Schupp EW, Jordano P, Gómez JM (2010) Seed dispersal effectiveness revisited: a conceptual review. New Phytol 188:333–353

    Article  PubMed  Google Scholar 

  • Sodhi NS, Liow LH, Bazzaz FA (2004) Avian extinctions from tropical and subtropical forests. Annu Rev Ecol Evol Syst 35:323–345

    Article  Google Scholar 

  • Stang M, Klinkhamer P, Van der Meijden E (2007) Asymmetric specialization and extinction risk in plant-flower visitor webs: a matter of morphology or abundance? Oecologia 151:442–453

    Article  PubMed  Google Scholar 

  • Tilman D (2001) Functional diversity. In: Levin SA (ed) Encyclopedia of Biodiversity. Academic Press, San Diego, CA, pp 109–120

    Chapter  Google Scholar 

  • Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445:202–205

    Article  PubMed  CAS  Google Scholar 

  • Tylianakis JM, Laliberté E, Nielsen A, Bascompte J (2010) Conservation of species interaction networks. Biol Conserv 143:2270–2279

    Article  Google Scholar 

  • Vanthomme H, Bellé B, Forget PM (2010) Bushmeat hunting alters recruitment of large-seeded plant species in Central Africa. Biotropica 42:672–679

    Article  Google Scholar 

  • Vázquez DP, Melián CJ, Williams NM, Blüthgen N, Krasnov BR, Poulin R (2007) Species abundance and asymmetric interaction strength in ecological networks. Oikos 116:1120–1127

    Article  Google Scholar 

  • Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant–animal mutualistic networks: a review. Ann Bot 103:1445–1457

    Article  PubMed  PubMed Central  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Wang BC, Smith TB (2002) Closing the seed dispersal loop. Trends Ecol Evol 17:379–386

    Article  Google Scholar 

  • Wenny DG, Levey DJ (1998) Directed seed dispersal by bellbirds in a tropical cloud forest. Proc Natl Acad Sci USA 95:6204–6207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wheelwright NT (1985) Fruit size gape width and the diets of fruit eating birds. Ecology 66:808–818

    Article  Google Scholar 

  • Wheelwright NT (1993) Fruit size in a tropical tree species: variation, preference by birds, and heritability. Vegetatio 107:163–174

    Google Scholar 

  • Wotton DM, Kelly D (2012) Do larger frugivores move seeds further? Body size, seed dispersal distance, and a case study of a large, sedentary pigeon. J Biogeogr 39:1973–1983

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Rodrigo Calvimontes, Fabrizzio Peralta, and especially to Veronica Avalos, for their help during fieldwork, to the staff of the Herbario Nacional de Bolivia for their help with the identification of plant species and to R. van den Elzen (Zoologisches Forschungsmuseum Alexander Koenig, Bonn), R. Prŷs-Jones and M. P. Adams (Natural History Museum, Tring), G. Mayr (Senckenberg Museum, Frankfurt/M.) and R. Winkler (Naturhistorisches Museum, Basel) for providing access to the bird collections kept in their charge. M. Hennen, J. Bates and D. Willard [Field Museum of Natural History (FMNH), Chicago] sent specimens, and J. V. Remsen and S. W. Cardiff (Louisiana State University Museum of Natural Science, Baton Rouge) and D. Willard (FMNH, Chicago) provided additional measurements. We also thank R. Diesener, S. Frahnert, C. Bracker, P. R. Becker, J. Fjeldså, N. Krabbe and J. Mlíkovsky for information about collection holdings. The study was funded by the German Science Foundation (Deutsche Forschungsgemeinschaft) (HE2041/20-1). M. S. was also supported by the research funding program Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz of Hesse’s Ministry of Higher Education, Research and the Arts. This study was done under permission and current laws of the government of Bolivia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Saavedra.

Additional information

Communicated by Joanna E. Lambert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saavedra, F., Hensen, I., Beck, S.G. et al. Functional importance of avian seed dispersers changes in response to human-induced forest edges in tropical seed-dispersal networks. Oecologia 176, 837–848 (2014). https://doi.org/10.1007/s00442-014-3056-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3056-x

Keywords

Navigation