Skip to main content

Advertisement

Log in

Influence of habitat complexity and landscape configuration on pollination and seed-dispersal interactions of wild cherry trees

  • Plant-Animal interactions - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Land-use intensification is a major cause for the decline in species diversity in human-modified landscapes. The loss of functionally important species can reduce a variety of ecosystem functions, such as pollination and seed dispersal, but the intricate relationships between land-use intensity, biodiversity and ecosystem functioning are still contentious. Along a gradient from forest to intensively used farmland, we quantified bee species richness, visitation rates of bees and pollination success of wild cherry trees (Prunus avium). We analysed the effects of structural habitat diversity at a local scale and of the proportion of suitable habitat around each tree at a landscape scale. We compared these findings with those from previous studies of seed-dispersing birds and mammals in the same model system and along the same land-use gradient. Bee species richness and visitation rates were found to be highest in structurally simple habitats, whereas bird species richness—but not their visitation rates—were highest in structurally complex habitats. Mammal visitation rates were only influenced at the landscape scale. These results show that different functional groups of animals respond idiosyncratically to gradients in habitat and landscape structure. Despite strong effects on bees and birds, pollination success and bird seed removal did not differ along the land-use gradient at both spatial scales. These results suggest that mobile organisms, such as bees and birds, move over long distances in intensively used landscapes and thereby buffer pollination and seed-dispersal interactions. We conclude that measures of species richness and interaction frequencies are not sufficient on their own to understand the ultimate consequences of land-use intensification on ecosystem functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilar R, Ashworth L, Galetto L, Aizen MA (2006) Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol Lett 9:968–980

    Article  PubMed  Google Scholar 

  • Aizen MA, Harder LD (2007) Expanding the limits of the pollen limitation concept: effects of pollen quantity and quality. Ecology 88:271–281

    Article  PubMed  Google Scholar 

  • Allen-Wardell G, Bernhardt P, Bitner R, Burquez A, Buchmann S, Cane J, Cox PA, Dalton V, Feinsinger P, Ingram M, Inouye D, Jones CE, Kennedy K, Kevan P, Koopowitz H, Medellin R, Medellin-Morales S, Nabhan GP, Pavlik B, Tependino V, Torchio P, Walker S (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv Biol 12:8–17

    Article  Google Scholar 

  • Baillie JEM, Hilton-Taylor C, Stuart SN (2004) 2004 IUCN red list of threatened species–a global species assessment. IUCN, Gland

    Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593

    Article  Google Scholar 

  • BirdLife (2004) Threatened birds of the world 2004. Birdlife International, Cambridge

    Google Scholar 

  • Bivand R with contributions by Micah Altman, Luc Anselin, Renato Assunção, Olaf Berke, Andrew Bernat, Eric Blankmeyer, Marilia Carvalho, Yongwan Chun, Bjarke Christensen, Carsten Dormann, Stéphane Dray, Rein Halbersma, Elias Krainski, Nicholas Lewin-Koh, Hongfei Li, Jielai Ma, Giovanni Millo, Werner Mueller, Hisaji Ono, Pedro Peres-Neto, Gianfranco Piras, Markus Reder, Michael Tiefelsdorf and Danlin Yu (2010) spdep: Spatial dependence: weighting schemes, statistics and models. R package version 0.5-19. Available at: http://CRAN.R-project.org/package=spdep

  • Börger L, Franconi N, Ferretti F, Meschi F, De Michele G, Gantz A, Coulson T (2006) An integrated approach to identify spatiotemporal and individual-level determinants of animal home range size. Am Nat 168:471–485

    Article  PubMed  Google Scholar 

  • Bommarco R, Biesmeijer JC, Meyer B, Potts SG, Pöyry J, Roberts SPM, Steffan-Dewenter I, Öckinger E (2010) Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc R Soc B 277:2075–2082

    Article  PubMed  Google Scholar 

  • Bracken MES, Friberg SE, Gonzalez-Dorantes CA, Williams SL (2008) Functional consequences of realistic biodiversity changes in a marine ecosystem. Proc Natl Acad Sci USA 105:924–928

    Article  PubMed  CAS  Google Scholar 

  • Breitbach N, Laube I, Steffan-Dewenter I, Böhning-Gaese K (2010) Bird diversity and seed dispersal along a human land-use gradient: high seed removal in structurally simple farmland. Oecologia 162:965–976. doi:10.1007/s00442-009-1547-y

    Article  PubMed  Google Scholar 

  • Brennan SP, Schnell GD (2005) Relationship between bird abundances and landscape characteristics: the influence of scale. Environ Monit Assess 105:209–228

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference, 2nd edn. Springer, New York

    Google Scholar 

  • Campos-Arceiz A, Larrinaga AR, Weerasinghe UR, Takatsuki S, Pastorini J, Leimgruber P, Fernando P, Santamaria L (2008) Behavior rather than diet mediates seasonal differences in seed dispersal by Asian elephants. Ecology 89:2684–2691

    Article  PubMed  Google Scholar 

  • Carpenter SR (1996) Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77:677–680

    Article  Google Scholar 

  • Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405:234–242

    Article  PubMed  CAS  Google Scholar 

  • Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 9:129–136

    Article  PubMed  CAS  Google Scholar 

  • Corlett RT (2007) Pollination or seed dispersal: which should we worry about most? In: Dennis AJ, Schupp EW, Green RJ, Westcott DA (eds) Seed dispersal: theory and its application in a changing world. CABI, Wallingford, pp 523–544

    Chapter  Google Scholar 

  • Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14:342–355

    Article  Google Scholar 

  • Dennis AJ, Westcott DA (2007) Estimating dispersal kernels produced by a diverse community of vertebrates. In: Dennis AJ, Schupp EW, Green RJ, Westcott DA (eds) Seed dispersal: theory and its application in a changing world. CABI, Wallingford, pp 201–228

    Chapter  Google Scholar 

  • Devictor V, Julliard R, Clavel J, Jiguet F, Lee A, Couvet D (2008) Functional biotic homogenization of bird communities in disturbed landscapes. Global Ecol Biogeogr 17:252–261

    Article  Google Scholar 

  • DLR-DFD (2009) CORINE Land Cover (CLC2006); Federal Environmental Agency, DLR-DFD 2009. Available at: http://www.corine.dfd.dlr.de/intro_en.html

  • Farwig N, Bailey D, Bochud E, Herrmann JD, Kindler E, Reusser N, Schuepp C, Schmidt-Entling MH (2009) Isolation from forest reduces pollination, seed predation and insect scavenging in Swiss farmland. Landsc Ecol 24:919–927

    Article  Google Scholar 

  • Finer MS, Morgan MT (2003) Effects of natural rates of geitonogamy on fruit set in Asclepias speciosa (Apocynaceae): evidence favoring the plant′s dilemma. Am J Bot 90:1746–1750

    Article  PubMed  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  PubMed  CAS  Google Scholar 

  • Gathmann A, Tscharntke T (2002) Foraging distances of solitary bees. J Anim Ecol 71:757–764

    Article  Google Scholar 

  • García D, Chacoff NP (2007) Scale-dependent effects of habitat fragmentation on hawthorn pollination, frugivory and seed predation. Conserv Biol 21:400–411

    Article  PubMed  Google Scholar 

  • García D, Zamora R, Amico GC (2010) Birds as suppliers of seed dispersal in temperrate ecosystems: conservation guidelines from real-world landscapes. Conserv Biol 24:1070–1079

    Article  PubMed  Google Scholar 

  • Ghazoul J (2005) Pollen and seed dispersal among dispersed plants. Biol Rev 80:413–443

    Article  PubMed  Google Scholar 

  • Goulson D (2000) Why do pollinators visit proportionally fewer flowers in large patches? Oikos 91:485–492

    Article  Google Scholar 

  • Grünewald C, Breitbach N, Böhning-Gaese K (2010) Tree visitation and seed dispersal of wild cherries by terrestrial mammals along a human land-use gradient. Basic Appl Ecol 11:532–541

    Article  Google Scholar 

  • Hecker U (2001) BLV-Handbuch Bäume und Sträucher: das umfassende Nachschlagewerk; 800 farbige Fotos und Zeichnungen. BLV, Munich

    Google Scholar 

  • Herrera JM, García D, Morales JM (2011) Matrix effects on plant-frugivore and plant-predator interactions in forest fragments. Landsc Ecol 26:125–135

    Article  Google Scholar 

  • Hirayama K, Ishida K, Tomaru N (2005) Effects of pollen shortage and self-pollination on seed production of an endangered tree, Magnolia stellata. Ann Bot 95:1009–1015

    Article  PubMed  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant–animal interactions. Ecol Lett 6:69–81

    Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kleijn D, van Langevelde F (2006) Interacting effects of landscape context and habitat quality on flower visiting insects in agricultural landscapes. Basic Appl Ecol 7:201–214

    Article  Google Scholar 

  • Klein A-M, Steffan-Dewenter I, Tscharntke T (2003a) Fruit set of highland coffee increases with the diversity of pollinating bees. Proc R Soc Lond B 270:955–961

    Article  Google Scholar 

  • Klein A-M, Steffan-Dewenter I, Tscharntke T (2003b) Pollination of Coffea canephora in relation to local and regional agroforestry management. J Appl Ecol 40:837–845

    Article  Google Scholar 

  • Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2006) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond B 274:303–313

    Article  Google Scholar 

  • Knight TM, Steets JA, Vamosi JC, Mazer SJ, Burd M, Campbell DR, Dudash MR, Johnston MO, Mitchell RJ, Ashman TL (2005) Pollen limitation of plant reproduction: pattern and process. Annu Rev Ecol Evol S 36:467–497

    Article  Google Scholar 

  • Kremen C (2005) Managing ecosystem services: what do we need to know about their ecology? Ecol Lett 8:468–479

    Article  PubMed  Google Scholar 

  • Kremen C, Ostfeld RS (2005) A call to ecologists: measuring, analyzing, and managing ecosystem services. Front Ecol Environ 3:540–548

    Article  Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci USA 99:16812–16816

    Article  PubMed  CAS  Google Scholar 

  • Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, LeBuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vázquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein A-M, Regetz J, Ricketts TH (2007) Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol Lett 10:299–314

    Article  PubMed  Google Scholar 

  • Larsen TH, Williams NM, Kremen C (2005) Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol Lett 8:538–547

    Article  PubMed  Google Scholar 

  • Lenz J, Fiedler W, Caprano T, Friedrichs W, Gaese BH, Wikelski M, Böhning-Gaese K (2011) Seed-dispersal distributions by trumpeter hornbills in fragmented landscapes. Proc R Soc Lond B 278(1716):2257–2264 doi: 10.1098/rspb.2010.2383

    Google Scholar 

  • Luck GW, Daily GC (2003) Tropical countryside bird assemblages: richness, composition, and foraging differ by landscape context. Ecol Appl 13:235–247

    Article  Google Scholar 

  • Lundberg J, Moberg F (2003) Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6:87–98

    Article  Google Scholar 

  • MacDonald D, Barrett P (1993) Collins field guide–mammals of Britain & Europe. HarperCollins, London

    Google Scholar 

  • Marzluff JM, Ewing K (2001) Restoration of fragmented landscapes for the conservation of birds: a general framework and specific recommendations for urbanizing landscapes. Restor Ecol 9:280–292

    Article  Google Scholar 

  • Mazerolle MJ, Villard M-A (1999) Patch characteristics and landscape context as predictors of species presence and abundance: a review. Ecoscience 6:117–124

    Google Scholar 

  • Michener CD (2007) The bees of the world, 2nd edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Millennium Ecosystem Assessment (2005a) Biodiversity regulation of ecosystem services. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends, vol 1. Findings of the Condition and Trends Working Group. Island Press, Washington, pp 297–329

    Google Scholar 

  • Millennium Ecosystem Assessment (2005b) Synthesis: condition and trends in systems and services, trade-offs for human well-being, and implications for the future. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends, vol 1. Findings of the Condition and Trends Working Group. Island Press, Washington, pp 827–838

    Google Scholar 

  • Potts SG, Kevan PG, Boone JW (2005) Conservation in pollination: collecting, surveying and monitoring. In: Dafni A, Kevan PG, Husband BC (eds) Practical pollination biology. Enviroquest, Cambridge, pp 401–434

    Google Scholar 

  • Pyke GH (1979) Optimal foraging in bumblebees: rule of movement between flowers within inflorescences. Anim Behav 27:1167–1181

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org

  • Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, Gemmill-Herren B, Greenleaf SS, Klein A-M, Mayfield MM, Morandin LA, Ochieng A, Viana BF (2008) Landscape effects on crop pollination services: are there general patterns? Ecol Lett 11:499–515

    Article  PubMed  Google Scholar 

  • Santi F (1988) Variabilité génétique inter et intrapopulations chez le merisier (Prunus avium L.). Thèse de Doctorat. INRA, Paris-Grignon

  • Schleuning M, Templin M, Huamán V, Vadillo GP, Becker T, Durka W, Fischer M, Matthies D (2011) Effects of inbreeding, outbreeding, and supplemental pollen on the reproduction of a hummingbird-pollinated clonal Amazonian herb. Biotropica 43:183–191. doi:10.1111/j.1744-7429.2010.00663.x

    Article  Google Scholar 

  • Schmid-Egger C, Risch S, Niehuis O (1995) Die Wildbienen und Wespen in Rheinland-Pfalz (Hymenoptera, Aculeata): Verbreitung, Ökologie und Gefährdungssituation. Fauna und Flora in Rheinland-Pfalz, Beiheft 16. Gesellschaft für Naturschutz und Ornithologie Rheinland-Pfalz e.V. (GNOR), Landau

  • Schueler S, Tusch A, Scholz F (2006) Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellites. Mol Ecol 15:3231–3243

    Article  PubMed  CAS  Google Scholar 

  • Schulze CH, Waltert M, Kessler PJA, Pitopang R, Shahabuddin, Veddeler D, Mühlenberg M, Gradstein SR, Leuschner C, Steffan-Dewenter I, Tscharntke T (2004) Biodiversity indicator groups of tropical land-use systems: comparing plants, birds, and insects. Ecol Appl 15:1321–1333

    Article  Google Scholar 

  • Sekercioglu CH (2006) Increasing awareness of avian ecological function. Trends Ecol Evol 21:464–471

    Article  PubMed  Google Scholar 

  • Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T (2002) Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83:1421–1432

    Article  Google Scholar 

  • Steffan-Dewenter I, Kuhn A (2003) Honeybee foraging in differentially structured landscapes. Proc R Soc Lond B 270:569–575

    Article  Google Scholar 

  • Steffan-Dewenter I, Potts SG, Packer L (2005) Pollinator diversity and crop pollination services are at risk. Trends Ecol Evol 20:651–653

    Article  PubMed  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Turĉek FJ (1968) The dissemination of Prunus avium L. by birds in forests. Waldhygiene 7:129–132

    Google Scholar 

  • Tylianakis JM, Rand TA, Kahmen A, Klein A-M, Buchmann N, Perner J, Tscharntke T (2008a) Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol 6:947–956

    CAS  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008b) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • UNEP (2007) Global Environment Outlook GEO4: environment for development. United Nations Environmental Programme, Nairobi

    Google Scholar 

  • Wesselingh RA (2007) Pollen limitation meets resource allocation: towards a comprehensive methodology. New Phytol 174:26–34

    Article  PubMed  Google Scholar 

  • Westphal C, Steffan-Dewenter I, Tscharntke T (2006) Foraging trip duration of bumblebees in relation to landscape-wide resource availability. Ecol Entomol 31:389–394

    Article  Google Scholar 

  • Westphal C, Bommarco R, Carre G, Lamborn E, Morison N, Petanidou T, Potts SG, Roberts SPM, Szentgyoergyi H, Tscheulin T, Vaissiere BE, Woyciechowski M, Biesmeijer JC, Kunin WE, Settele J, Steffan-Dewenter I (2008) Measuring bee diversity in different European habitats and biogeographical regions. Ecol Monogr 78:653–671

    Article  Google Scholar 

  • Westrich P (1989a) Die Wildbienen Baden-Württembergs, Allgemeiner Teil: Lebensräume, Verhalten, Ökologie und Schutz. Ulmer, Stuttgart

    Google Scholar 

  • Westrich P (1989b) Die Wildbienen Baden-Württembergs, Spezieller Teil: Gattungen und Arten. Ulmer, Stuttgart

    Google Scholar 

  • Westrich P (1996) Habitat requirements of central European bees and the problems of partial habitats. In: Matheson A, Buchmann SL, O`Toole C, Westrich P, Williams IH (eds) The conservation of bees. Academic press, London, pp 1–16

    Google Scholar 

  • Williams IH (1996) Aspects of bee diversity and crop pollination in the European Union. In: Matheson A, Buchmann SL, O`Toole C, Westrich P, Williams IH (eds) The conservation of bees. Academic press, London, pp 63–80

    Google Scholar 

  • Wilson DE, Mittermeier RA (eds) (2009) Handbook of the mammals of the world, vol 1. Carnivores. Lynx Edicions, Barcelona

    Google Scholar 

  • Winfree R, Griswold T, Kremen C (2007) Effect of human disturbance on bee communities in a forested ecosystem. Conserv Biol 21:213–223

    Article  PubMed  Google Scholar 

  • Zamora R, Hódar JA, Matías L, Mendoza I (2010) Positive adjacency effects mediated by seed disperser birds in pine plantations. Ecol Appl 20:1053–1060

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Studies of seed set were supported by M. Templin, and by S. Eggers, who carefully navigated the mobile access platform into the tree crowns. We thank G. Reder, R. Theunert, C. Westphal and J. Esser for cross-checking difficult bee specimens. We also thank three unknown reviewers for comments on an earlier version of the manuscript. Financial support came from the Deutsche Forschungsgemeinschaft (BO 1221/13-1) and the Ministry for Environment and Forestry Rhineland-Palatinate. All experiments comply with the current laws of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Breitbach.

Additional information

Communicated by Bernhard Schmid.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breitbach, N., Tillmann, S., Schleuning, M. et al. Influence of habitat complexity and landscape configuration on pollination and seed-dispersal interactions of wild cherry trees. Oecologia 168, 425–437 (2012). https://doi.org/10.1007/s00442-011-2090-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-2090-1

Keywords

Navigation