Skip to main content
Log in

Bottom-up and top-down herbivore regulation mediated by glucosinolates in Brassica oleracea var. acephala

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Quantitative differences in plant defence metabolites, such as glucosinolates, may directly affect herbivore preference and performance, and indirectly affect natural enemy pressure. By assessing insect abundance and leaf damage rate, we studied the responses of insect herbivores to six genotypes of Brassica oleracea var. acephala, selected from the same cultivar for having high or low foliar content of sinigrin, glucoiberin and glucobrassicin. We also investigated whether the natural parasitism rate was affected by glucosinolates. Finally, we assessed the relative importance of plant chemistry (bottom-up control) and natural enemy performance (top-down control) in shaping insect abundance, the ratio of generalist/specialist herbivores and levels of leaf damage. We found that high sinigrin content decreased the abundance of the generalist Mamestra brassicae (Lepidoptera, Noctuidae) and the specialist Plutella xylostella (Lepidoptera, Yponomeutidae), but increased the load of the specialist Eurydema ornatum (Hemiptera, Pentatomidae). Plants with high sinigrin content suffered less leaf injury. The specialist Brevicoryne brassicae (Hemiptera, Aphididae) increased in plants with low glucobrassicin content, whereas the specialists Pieris rapae (Lepidoptera, Pieridae), Aleyrodes brassicae (Hemiptera, Aleyrodidae) and Phyllotreta cruciferae (Coleoptera, Chrysomelidae) were not affected by the plant genotype. Parasitism rates of M. brassicae larvae and E. ornatum eggs were affected by plant genotype. The ratio of generalist/specialist herbivores was positively correlated with parasitism rate. Although both top-down and bottom-up forces were seen to be contributing, the key factor in shaping both herbivore performance and parasitism rate was the glucosinolate concentration, which highlights the impact of bottom-up forces on the trophic cascades in crop habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bekaert M, Edger PP, Hudson CM, Pires JC, Conant GC (2012) Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis. New Phytol 196:596–605

    Article  CAS  PubMed  Google Scholar 

  • Bohinc T, Hrastar R, Kosír IJ, Trdan S (2013) Association between glucosinolate concentration and injuries caused by cabbage stink bugs Eurydema spp. (Heteroptera: Pentatomidae) on different brassicas. Acta Sci Agron 35:1–8

    Article  CAS  Google Scholar 

  • Bukovinszky T, Poelman EH, Gols R, Prekatsakis G, Vet LEM, Harvey JA, Dicke M (2009) Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism. Oecologia 160:299–308

    Article  PubMed  Google Scholar 

  • Carmona D, Lajeunesse MJ, Johnson MTJ (2011) Plant traits that predict resistance to herbivores. Funct Ecol 25:358–367

    Article  Google Scholar 

  • Cartea ME, Velasco P, Obregón S, Padilla G, de Haro A (2008) Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 69:403–410

    Article  CAS  PubMed  Google Scholar 

  • Cartea ME, Padilla G, Vilar M, Velasco P (2009) Incidence of the major Brassica pests in northwestern Spain. J Econ Entomol 102:767–773

    Article  CAS  PubMed  Google Scholar 

  • Cole RA (1997) The relative importance of glucosinolates and amino acids to the development of two aphid pests Brevicoryne brassicae and Myzus persicae on wild and cultivated brassica species. Entomol Exp Appl 85:121–133

    Article  CAS  Google Scholar 

  • Conti E, Zandra C, Salerno G, Leonbruni B, Volpe D, Frati F, M C, Bin F (2008) Changes in the volatile profile of Brassica oleracea due to feeding and oviposition by Murgantia histrionica (Heteroptera: Pentatomidae). Eur J Entomol 105:839–847

    Article  CAS  Google Scholar 

  • de Vos M, Kriksunov KL, Jander G (2008) Indole-3-acetonitrile production from indole glucosinolates deters oviposition by Pieris rapae (white cabbage butterfly). Plant Physiol 146:916–926

    Article  PubMed Central  PubMed  Google Scholar 

  • Denno RF, Gratton C, Peterson MA, Langellotto GA, Finke DL, Huberty AF (2002) Bottom-up forces mediate natural-enemy impact in a phytophagous insect community. Ecology 83:1443–1458

    Article  Google Scholar 

  • Fahey JW, Zalcmann AT, Zalalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  PubMed  Google Scholar 

  • Fatouros NE, Lucas-Barbosa D, Weldegergis BT, Pashalidou FG, van Loon JJA, Dicke M, Harvey JA, Gols R, Huigens ME (2012) Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels. PLoS One 7(8):e43607. doi:10.1371/journal.pone.0043607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fritz VA, Justen VL, Bode AM, Schuster T, Wang M (2010) Glucosinolate enhancement in cabbage induced by jasmonic acid application. HortScience 45:1188–1191

    Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton

    Google Scholar 

  • Gols R, Harvey JA (2009) Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochem Rev 8:187–206

    Article  CAS  Google Scholar 

  • Gols R, Bukovinszky T, van Dam N, Dicke M, Bullock JM, Harvey JA (2008) Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. J Chem Ecol 34:132–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halaj J, Wise DH (2001) Terrestrial trophic cascades: how much do they trickle? Am Nat 157:262–281

    Article  CAS  PubMed  Google Scholar 

  • Harvey JA, Gols R (2011) Population-related variation in plant defense more strongly affects survival of an herbivore than its solitary parasitoid wasp. J Chem Ecol 37:1081–1090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harvey JA, Gols R, Wagenaar R, Bezemer TM (2007) Development of an insect herbivore and its pupal parasitoid reflect differences in direct plant defense. J Chem Ecol 33:1556–1569

    Article  CAS  PubMed  Google Scholar 

  • Harvey JA, van Dam N, Raajimakers CE, Bullock JM, Gols R (2011) Tri-trophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea). Oecologia 166:421–431

    Article  PubMed  Google Scholar 

  • Hopkins RJ, van Dam N, van Loon JJA (2009) Role of glucosinolates in insect–plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  PubMed  Google Scholar 

  • Hunter MD, Price PW (1992) Playing chutes and ladders: heterogeneity and the relative role of bottom-up and top-down forces in natural communities. Ecology 73:724–732

    Google Scholar 

  • Kliebenstein D, Lambrix V, Reichelt M, Mitchell-Olds T (2001) Gene duplication and the diversification of secondary metabolism: side chain modification of glucosinolates in Arabidopsis thaliana. Plant Cell 13:681–693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kos M, Broekgaarden C, Kabouw P, Oude Lenferink K, Poelman EH, Vet LEM, Dicke M, van Loon JJA (2011a) Relative importance of plant-mediated bottom-up and top-down forces on herbivore abundance on Brassica oleracea. Funct Ecol 25:1113–1124

    Article  Google Scholar 

  • Kos M, Kabouw P, Noordam R, Hendriks K, Vet LEM, van Loon JJA, Dicke M (2011b) Prey-mediated effects of glucosinolates on aphid predators. Ecol Entomol 36:377–388

    Article  Google Scholar 

  • Lankau RA (2007) Specialist and generalist herbivores exert opposing selection on a chemical defense. New Phytol 175:176–184

    Article  PubMed  Google Scholar 

  • Lankau RA, Kliebenstein DJ (2009) Competition, herbivory and genetics interact to determine the accumulation and fitness consequences of a defence metabolite. J Ecol 97:78–88

    Article  Google Scholar 

  • Lankau RA, Strauss SY (2008) Community complexity drives patterns of natural selection on a chemical defence of Brassica nigra. Am Nat 171:150–161

    Article  PubMed  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  Google Scholar 

  • Newton EL, Bullock JM, Hodgson DJ (2009a) Bottom-up effect of glucosinolate variation on aphid colony dynamics in wild cabbage populations. Ecol Entomol 34:614–623

    Article  Google Scholar 

  • Newton EL, Bullock JM, Hodgson DJ (2009b) Glucosinolate polymorphism in wild cabbage (Brassica oleracea) influences the structure of herbivore communities. Oecologia 160:63–76

    Article  PubMed  Google Scholar 

  • Newton EL, Bullock JM, Hodgson DJ (2010) Temporal consistency in herbivore responses to glucosinolate polymorphism in populations of wild cabbage (Brassica oleracea). Oecologia 164:689–699

    Article  PubMed  Google Scholar 

  • Ode P (2006) Plant chemistry and natural enemy fitness: effect on herbivore and natural enemy interactions. Annu Rev Entomol 51:163–185

    Article  CAS  PubMed  Google Scholar 

  • Poelman EH, Broekgaarden C, van Loon JJA, Dicke M (2008) Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Mol Ecol 17:3352–3365

    Article  CAS  PubMed  Google Scholar 

  • Poelman EH, van Dam N, van Loon JJA, Vet LEM, Dicke M (2009) Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores. Ecology 90:1863–1877

    Article  PubMed  Google Scholar 

  • Poelman EH, van Loon JJA, van Dam N, Vet LEM, Dicke M (2010) Herbivore-induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack. Ecol Entomol 35:240–247

    Article  Google Scholar 

  • Raztka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bomb. Proc Natl Acad Sci USA 99:11223–11228

    Article  Google Scholar 

  • Reed DW, Pivnick KA, Underhill EW (1989) Identification of chemical oviposition stimulants for the diamondback moth, Plutella xylostella, present in three species of Brassicaceae. Entomol Exp Appl 53:277–286

    Article  CAS  Google Scholar 

  • Renwick JA, Haribel M, Gouinguené S, Städler E (2006) Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella. J Chem Ecol 32:755–766

    Article  CAS  PubMed  Google Scholar 

  • Santolamazza-Carbone S, Velasco P, Selfa J, Soengas P, Cartea ME (2013) Intraspecific variation of host plant and locality influence the lepidopteran-parasitoid system of Brassica oleracea crops. J Econ Entomol 106:1134–1144

    Article  CAS  PubMed  Google Scholar 

  • Shields VDC, Mitchell BK (1995) Sinigrin as a feeding deterrent in two crucifer-feeding, polyphagous lepidopterous species and the effects of feeding stimulant mixtures on deterrency. Phil Trans R Soc Lond B 347:439–446

    Google Scholar 

  • Soler R, Martijn Bezemer T, Van der Putten WH, Vet LEM, Harvey JA (2005) Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J Anim Ecol 74:1121–1130

    Article  Google Scholar 

  • Spencer JL, Pillai S, Bernays EA (1999) Synergism in the oviposition behavior of Plutella xylostella: sinigrin and wax compounds. J Insect Behav 12:483–500

    Article  Google Scholar 

  • Sun JY, Sonderby IE, Halkier BA, Jander G, de Vos M (2009) Non-volatile intact indole glucosinolates are host recognition cues for ovipositing Plutella xylostella. J Chem Ecol 35:1427–1436

    Article  CAS  PubMed  Google Scholar 

  • Turlings TCJ, Benrey B (1998) Effects of plant metabolites on the behavior and development of parasitic wasps. Ècoscience 5:321–333

    Google Scholar 

  • Velasco P, Cartea ME, González C, Vilar M, Ordás A (2007) Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group). J Agric Food Chem 55:955–962

    Article  CAS  PubMed  Google Scholar 

  • White JA, Whitham TG (2000) Associational susceptibility of cottonwood to a box elder herbivore. Ecology 81:1795–1800

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Plan for Research and Development (AGL2012-35539). The authors thank Rosaura Abilleira, Pilar Comesaña, César González, and Tamara Sotelo for their valuable help in field samplings. We also thank David Brown for improving the English. S. Santolamazza-Carbone acknowledges a post-doctoral research contract (JAE-Doc) from the CSIC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Santolamazza-Carbone.

Additional information

Communicated by Merijn Kant.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 196 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santolamazza-Carbone, S., Velasco, P., Soengas, P. et al. Bottom-up and top-down herbivore regulation mediated by glucosinolates in Brassica oleracea var. acephala . Oecologia 174, 893–907 (2014). https://doi.org/10.1007/s00442-013-2817-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2817-2

Keywords

Navigation