Skip to main content
Log in

Correlated Induction of Phytohormones and Glucosinolates Shapes Insect Herbivore Resistance of Cardamine Species Along Elevational Gradients

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Although the production of phytohormones has been commonly associated with production of plant defence and stress-related traits, few studies have simultaneously investigated this phenomenon across several plant species that grow along large-scale ecological gradients. To address these knowledge gaps, we performed a common garden experiment with six Cardamine species, which collectively encompass an elevational gradient of 2000 m. We quantified constitutive and Pieris brassicae caterpillars-induced phytohormones and chemical defences in leaves. We found a correlated expression of phytohormone production and the subsequent induction of chemical defences, and this correlated expression reduced herbivore performance. Furthermore, we found that abiotic conditions associated with the optimal elevation range of each species influenced the production of phytohormones and chemical defences, as well as plant growth and productivity. In particular, we found that plant species adapted to milder abiotic conditions at low elevations grew faster, were more productive and produced greater levels of chemical defences. In contrast, plant species adapted to harsher abiotic conditions at high elevations tended to produce greater levels of defence-related oxylipins. Overall, these findings highlight the importance of disentangling the role of phytohormones in mediating plant adaptations to shifting biotic and abiotic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aeschimann D, Lauber K, Moser DM, Theurillat J-P (2004) Flora Alpina. Haupt, Berne

    Google Scholar 

  • Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813

    PubMed  PubMed Central  Google Scholar 

  • Bodenhausen N, Reymond P (2007) Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol Plant-Microbe Interact 20(11):1406–1420

    Article  CAS  PubMed  Google Scholar 

  • Coley P (1998) Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Clim Chang 39(2–3):455–472

    Article  Google Scholar 

  • Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci U S A 92(10):4114–4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32(1):40–52

    Article  CAS  PubMed  Google Scholar 

  • De Ollas C, Arbona V, Gomez-Cadenas A, Dodd IC (2018) Attenuated accumulation of jasmonates modifies stomatal responses to water deficit. J Exp Bot 69(8):2103–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Defossez E, Pellissier L, Rasmann S (2018) The unfolding of plant growth form-defence syndromes along elevation gradients. Ecol Lett 21(5):609–618

    Article  PubMed  Google Scholar 

  • Demkura PV, Abdala G, Baldwin IT, Ballaré CL (2010) Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol 152(2):1084–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Descombes P, Marchon J, Pradervand J-N, Bilat J, Guisan A, Rasmann S, Pellissier L (2017) Community-level plant palatability increases with elevation as insect herbivore abundance declines. J Ecol 105(1):142–151

    Article  Google Scholar 

  • Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I et al (2016) The global spectrum of plant form and function. Nature 529(7585):167–171

    Article  CAS  PubMed  Google Scholar 

  • Dobzhansky T (1950) Evolution in the tropics. Am Sci 38:209–221

    Google Scholar 

  • Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20

    Article  Google Scholar 

  • Dray S, Chessel D, Thioulouse J (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84(11):3078–3089

    Article  Google Scholar 

  • Erb M, Glauser G, Robert CAM (2012a) Induced immunity against belowground insect herbivores- activation of defenses in the absence of a jasmonate burst. J Chem Ecol 38(6):629–640

    Article  CAS  PubMed  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012b) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17(5):250–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer EE, Alméras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6(4):372–378

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436–442

    Article  PubMed  Google Scholar 

  • Grosser K, van Dam NM (2017) A straightforward method for glucosinolate extraction and analysis with high-pressure liquid chromatography (HPLC). J Vis Exp (121):55425

  • Gupta A, Hisano H, Hojo Y, Matsuura T, Ikeda Y, Mori IC, Senthil-Kumar M (2017) Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Sci Rep 7(1):4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horváth E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26(3):290–300

    Article  CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Robert CAM, Hervé MR, Hu L, Bont Z, Erb M (2017) A mechanism for sequence specificity in plant-mediated interactions between herbivores. New Phytol 214(1):169–179

    Article  CAS  PubMed  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • Ismail A, Riemann M, Nick P (2012) The jasmonate pathway mediates salt tolerance in grapevines. J Exp Bot 63(5):2127–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeandroz S, Lamotte O (2017) Editorial: plant responses to biotic and abiotic stresses: lessons from cell signaling. Front Plant Sci 8:1772

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Guo H (2010) A comparative genomic analysis of plant hormone related genes in different species. J Genet Genomics 37(4):219–230

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462–462

    PubMed  PubMed Central  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Book  Google Scholar 

  • Körner C (2007) The use of 'altitude' in ecological research. Trends Ecol Evol 22(11):569–574

    Article  PubMed  Google Scholar 

  • Kramell R, Schmidt J, Schneider G, Sembdner G, Schreiber K (1988) Synthesis of n-(jasmonoyl)amino acid conjugates. Tetrahedron 44(18):5791–5807

    Article  CAS  Google Scholar 

  • Latif F, Ullah F, Mehmood S, Khattak A, Khan AU, Khan S, Husain I (2016) Effects of salicylic acid on growth and accumulation of phenolics in Zea mays L. under drought stress. Acta Agric Scand B Soil Plant Sci 66(4):325–332

    CAS  Google Scholar 

  • Mittler R, Blumwald E (2015) The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27(1):64–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moons A, Prinsen E, Bauw G, Van Montagu M (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9(12):2243–2259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller C, van Loon J, Ruschioni S, De Nicola GR, Olsen CE, Iori R, Agerbirk N (2015) Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae. Phytochemistry 118:139–148

    Article  CAS  PubMed  Google Scholar 

  • Nejat N, Mantri N (2017) Plant immune system: crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence. Curr Issues Mol Biol 23:1–16

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. Version 2.0-10: http://vegan.r-forge.r-project.org/

  • Okuma E, Nozawa R, Murata Y, Miura K (2014) Accumulation of endogenous salicylic acid confers drought tolerance to Arabidopsis. Plant Signal Behav 9(3):e28085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedranzani H, Sierra-de-Grado R, Vigliocco A, Miersch O, Abdala G (2007) Cold and water stresses produce changes in endogenous jasmonates in two populations of Pinus pinaster Ait. Plant Growth Regul 52(2):111–116

    Article  CAS  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    Article  CAS  PubMed  Google Scholar 

  • Pellissier L, Fiedler K, Ndribe C, Dubuis A, Pradervand J-N, Guisan A, Rasmann S (2012) Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol Evol 2(8):1818–1825

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellissier L, Moreira X, Danner H, Serrano M, Salamin N, van Dam NM, Rasmann S (2016) The simultaneous inducibility of phytochemicals related to plant direct and indirect defences against herbivores is stronger at low elevation. J Ecol 104(4):1116–1125

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. In: Schekman R, editor. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rasmann S, Alvarez N, Pellissier L. 2014a. The altitudinal niche-breadth hypothesis in insect-plant interactions. In: Voelckel C, Jander G, editors. Annual Plant Reviews, Volume 47, Insect-Plant Interactions: Wiley p 339–359

  • Rasmann S, Pellissier L, Defossez E, Jactel H, Kunstler G (2014b) Climate-driven change in plant–insect interactions along elevation gradients. Funct Ecol 28(1):46–54

    Article  Google Scholar 

  • Rasmann S, Chassin E, Bilat J, Glauser G, Reymond P (2015) Trade-off between constitutive and inducible resistance against herbivores is only partially explained by gene expression and glucosinolate production. J Exp Bot 66(9):2527–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reymond P, Bodenhausen N, Van Poecke RMP, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16(11):3132–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P (2015) Exploring jasmonates in the hormonal network of drought and salinity responses. Front Plant Sci 6(1077)

  • Rosseel Y (2012) lavaan: An R package for structural equation modeling. J Stat Softw 48(2):36

    Article  Google Scholar 

  • Schemske DW (2009) Biotic interactions and speciation in the tropics. In: Butlin RK, Bridle JR, Schluter D (eds) Speciation and patterns of diversity. Cambridge Univ. Press, Cambridge, pp 219–239

    Chapter  Google Scholar 

  • Schmidt A, Nagel R, Krekling T, Christiansen E, Gershenzon J, Krokene P (2011) Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies). Plant Mol Biol 77(6):577–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227

    Article  CAS  PubMed  Google Scholar 

  • Suhita D, Kolla VA, Vavasseur A, Raghavendra AS (2003) Different signaling pathways involved during the suppression of stomatal opening by methyl jasmonate or abscisic acid. Plant Sci 164(4):481–488

    Article  CAS  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17(5):260–270

    Article  CAS  PubMed  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14(6):310–317

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3(8):525–536

    Article  PubMed  PubMed Central  Google Scholar 

  • van Dam NM, Witjes L, Svatos A (2004) Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. New Phytol 161(3):801–810

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • War AR, Paulraj MG, War MY, Ignacimuthu S (2011) Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signal Behav 6(11):1787–1792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M et al (2004) The worldwide leaf economics spectrum. Nature 428(6985):821–827

    Article  CAS  PubMed  Google Scholar 

  • Yoon JY, Hamayun M, Lee S-K, Lee I-J (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12(2):63–68

    Article  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25(2):139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu S, Yang S, Chen Y (2015) Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma 252(3):911–924

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann N, Kienast F (1999) Predictive mapping of alpine grasslands in Switzerland: species versus community approach. J Veg Sci 10:469–482

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Julia Bilat who helped with plant trait sampling. We thank Nichole Wetter for commenting on earlier versions of the manuscript. This research was financially supported by a Swiss National Science Foundation grant 31003A_159869 to SR. NMvD was supported by the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig funded by the German Research Foundation (FZT 118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Rasmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robert, C.A.M., Pellissier, L., Moreira, X. et al. Correlated Induction of Phytohormones and Glucosinolates Shapes Insect Herbivore Resistance of Cardamine Species Along Elevational Gradients. J Chem Ecol 45, 638–648 (2019). https://doi.org/10.1007/s10886-019-01084-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-019-01084-2

Keywords

Navigation