Skip to main content
Log in

Larval growth in polyphenic salamanders: making the best of a bad lot

  • Population ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Polyphenisms are excellent models for studying phenotypic variation, yet few studies have focused on natural populations. Facultative paedomorphosis is a polyphenism in which salamanders either metamorphose or retain their larval morphology and eventually become paedomorphic. Paedomorphosis can result from selection for capitalizing on favorable aquatic habitats (paedomorph advantage), but could also be a default strategy under poor aquatic conditions (best of a bad lot). We tested these alternatives by quantifying how the developmental environment influences the ontogeny of wild Arizona tiger salamanders (Ambystoma tigrinum nebulosum). Most paedomorphs in our study population arose from slow-growing larvae that developed under high density and size-structured conditions (best of a bad lot), although a few faster-growing larvae also became paedomorphic (paedomorph advantage). Males were more likely to become paedomorphs than females and did so under a greater range of body sizes than females, signifying a critical role for gender in this polyphenism. Our results emphasize that the same phenotype can be adaptive under different environmental and genetic contexts and that studies of phenotypic variation should consider multiple mechanisms of morph production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aukema B (1995) The adaptive signficance of wing dimorphism in carabid beetles. Res Popul Ecol 37:105–110

    Article  Google Scholar 

  • Behler JL, King FW (1979) The Audubon Society field guide to North American reptiles and amphibians. Knopf, New York

    Google Scholar 

  • Bizer JR (1978) Growth rates and size at metamorphosis of high elevation populations of Ambystoma tigrinum. Oecologia 34:175–184

    Article  Google Scholar 

  • Brunkow PE, Collins JP (1996) Effects of individual variation in size on growth and development of larval salamanders. Ecology 77:1483–1492

    Article  Google Scholar 

  • Brunkow PE, Collins JP (1998) Group size structure affects patterns of aggression in larval salamanders. Behav Ecol 9:508–514

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Caswell H (1983) Phenotypic plasticity in life-history traits: demographic effects and evolutionary consequences. Am Zool 23:35–46

    Google Scholar 

  • Church DR, Bailey LL, Wilbur HM, Kendall WL, Hines JE (2007) Iteroparity in the variable environment of the salamander Ambystoma tigrinum. Ecology 88:891–903

    Article  PubMed  Google Scholar 

  • Collins JP (1981) Distribution, habitats, and life history variation in the tiger salamander, Ambystoma tigrinum, in east-central and southeast Arizona. Copeia 1981:666–675

    Article  Google Scholar 

  • Denoël M, Hervant F, Schabetsberger R, Joly P (2002) Short- and long- term advantages of an alternative ontogenetic pathway. Biol J Linn Soc 77:105–112

    Article  Google Scholar 

  • Denoël M, Joly P, Whiteman HH (2005) Evolutionary ecology of facultative paedomorphosis in newts and salamanders. Biol Rev 80:663–671

    Article  PubMed  Google Scholar 

  • Denoël M, Whiteman HH, Wissinger SA (2007) Foraging tactics in alternative heterochronic salamander morphs: trophic quality of ponds matters more than water permanency. Freshw Biol 52:1667–1676

    Article  Google Scholar 

  • DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81

    Article  PubMed  CAS  Google Scholar 

  • Doyle JM, Whiteman HH (2008) Paedomorphosis in Ambystoma talpoideum: effects of initial size variation and density. Oecologia 156:87–94

    Article  PubMed  Google Scholar 

  • Emlen DJ, Hunt J, Simmons LW (2005) Evolution of sexual dimorphism and male dimorphism in the expression of beetle horns: phylogenetic evidence for modularity, evolutionary lability, and constraint. Am Nat 166:S42–S68

    Article  PubMed  Google Scholar 

  • Emlen DJ, Corley Lavine L, Ewen-Campen B (2007) On the origin and evolutionary diversification of beetle ‘horns’. Proc Natl Acad Sci USA 104:8661–8668

    Article  PubMed  CAS  Google Scholar 

  • Feder ME, Burggren WW (1992) Environmental physiology of the amphibians. University of Chicago Press, Chicago

    Google Scholar 

  • Frankino WA, Pfennig DW (2001) Condition-dependent expression of trophic polyphenism: effects of individual size and competitive ability. Evol Ecol Res 3:939–951

    Google Scholar 

  • Gross MR (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol Evol 11:92–98

    Article  PubMed  CAS  Google Scholar 

  • Harris RN (1987) Density-dependent paedomorphosis in the salamander Notophthalmus viridescens dorsalis. Ecology 68:705–712

    Article  Google Scholar 

  • Harris RN, Semlitsch RD, Wilbur HM, Fauth JE (1990) Local variation in the genetic basis of paedomorphosis in the salamander Ambystoma talpoideum. Evolution 44:1588–1603

    Article  Google Scholar 

  • Hazel WN, Smock R, Johnson MD (1990) A polygenic model for the evolution and maintenance of conditional strategies. Proc R Soc Lond B 242:181–187

    Article  CAS  Google Scholar 

  • Hazel W, Smock R, Lively CM (2004) The ecological genetics of conditional strategies. Am Nat 163:888–900

    Article  PubMed  Google Scholar 

  • Johnson E, Whiteman HH, Bierzchudek P (2003) Potential of prey size and type to affect foraging asymmetries in tiger salamander larvae (Ambystoma tigrinum nebulosum). Can J Zool 81:1726–1735

    Article  Google Scholar 

  • Kikuyama S, Yamamoto K, Kobayashi T, Tonon MC, Galas L, Vaudry H (2005) Hormonal regulation of growth in amphibians. In: Heatwole H (ed) Amphibian biology, endocrinology, vol 6. Surrey Beatty, Chipping Norton, pp 2267–2300

    Google Scholar 

  • Maret TJ, Collins JP (1997) Ecological origin of morphological diversity: a study of alternative trophic phenotypes in larval salamanders. Evolution 51:898–905

    Article  Google Scholar 

  • McPeek MA, Holt RD (1992) The evolution of dispersal in spatially and temporally varying environments. Am Nat 140:1010–1027

    Article  Google Scholar 

  • Nussey DH, Wilson AJ, Brommer JE (2007) The evolutionary ecology of phenotypic plasticity in wild populations. J Evol Biol 20:831–844

    Article  PubMed  CAS  Google Scholar 

  • Persson L, Byström P, Wahlström E (2000) Cannibalism and competition in Eurasian perch: population dynamics of an ontogenetic omnivore. Ecology 81:1058–1071

    Article  Google Scholar 

  • Persson L, Claessen D, de Roos AM, Byström P, Sjögren S, Svanbäck R, Westman E (2004) Cannibalism in a size-structured population: energy extraction and control. Ecol Monogr 74:135–157

    Article  Google Scholar 

  • Pfennig DW (1992) Polyphenism in spadefoot toad tadpoles as a locally-adjusted evolutionarily stable strategy. Evolution 46:1408–1420

    Article  Google Scholar 

  • Pfennig DW, McGee M (2010) Resource polyphenism increases species richness: a test of the hypotheses. Phil Trans R Soc Lond B 365:577–591

    Article  Google Scholar 

  • Pfennig DW, Rice AM, Martin RA (2007) Field and experimental evidence for competition’s role in phenotypic divergence. Evolution 61:257–271

    Article  PubMed  Google Scholar 

  • Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting C, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467

    Article  PubMed  Google Scholar 

  • Pollock KH, Nichols JD, Brownie C, Hines JE (1990) Statistical inference for capture-recapture experiments. Wildl Monogr 107:1–97

    Google Scholar 

  • Relyea RA (2002) Costs of phenotypic plasticity. Am Nat 159:272–282

    Article  PubMed  Google Scholar 

  • Roff DA (1986) The evolution of wing dimorphisms in insects. Evolution 40:1009–1020

    Article  Google Scholar 

  • Roff DA (1994) Why is there so much genetic variation for wing dimorphism? Res Popul Ecol 36:145–150

    Article  Google Scholar 

  • Roff DA (1996) The evolution of threshold traits in animals. Q Rev Biol 71:3–35

    Article  Google Scholar 

  • Roff DA, Fairbairn DJ (1993) The evolution of alternative morphologies: fitness and wing morphology in male sand crickets. Evolution 47:1572–1584

    Article  Google Scholar 

  • Roff DA, Mostowy S, Fairbairn DJ (2002) The evolution of trade-offs: testing predictions on response to selection and environmental variation. Evolution 56:84–95

    PubMed  Google Scholar 

  • Roff DA, Crnokrak P, Fairbairn DJ (2003) The evolution of trade-offs: geographic variation in call duration and flight ability in the sand cricket, Gryllus firmus. J Evol Biol 16:744–753

    Article  PubMed  CAS  Google Scholar 

  • Scheiner SM (1993) Genetics and evolution of phenotypic plasticity. Annu Rev Ecol Syst 24:35–68

    Article  Google Scholar 

  • Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Annu Rev Ecol Syst 17:667–693

    Article  Google Scholar 

  • Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer Associates, Sunderland

    Google Scholar 

  • Semlitsch RD (1985) Reproductive strategy of a facultatively paedomorphic salamander Ambystoma talpoideum. Oecologia 65:305–313

    Article  Google Scholar 

  • Sexton OJ, Bizer JR (1978) Life history patterns of Ambystoma tigrinum in montane Colorado. Am Midl Nat 99:101–118

    Article  Google Scholar 

  • Smith CK (1990) Effects of variation in body size on intraspecific competition among larval salamanders. Ecology 71:1777–1788

    Article  Google Scholar 

  • Smith-Gill SJ (1983) Developmental plasticity: developmental conversion versus phenotypic modulation. Am Zool 23:47–55

    Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, New York

    Google Scholar 

  • Stiffler DF (2005) Endocrine control of water and electrolyte balance in amphibians. In: Heatwole H (ed) Amphibian biology, endocrinology, vol 6. Surrey Beatty, Chipping Norton, Australia, pp 2301–2326

    Google Scholar 

  • Thompson JD (1991) Phenotypic plasticity as a component of evolutionary change. Trends Ecol Evol 6:246–249

    Article  PubMed  CAS  Google Scholar 

  • Tomkins JL, Hazel W (2007) The status of the conditional evolutionarily stable strategy. Trends Ecol Evol 22:522–528

    Article  PubMed  Google Scholar 

  • Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man. Aldine, Chicago, pp 136–179

    Google Scholar 

  • Van Buskirk J, Smith DC (1991) Density-dependent population regulation in a salamander. Ecology 72:1747–1756

    Article  Google Scholar 

  • Via S (2001) Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol Evol 16:381–390

    Article  PubMed  Google Scholar 

  • Via S, Gromulkiewicz R, de Jong G, Scheiner SM, Schlichting CD, Van Tienderen PH (1995) Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol Evol 10:212–217

    Article  PubMed  CAS  Google Scholar 

  • Wakano JY, Whiteman HH (2008) Evolution of polyphenism: the role of density and relative body size in morph determination. Evol Ecol Res 10:1157–1172

    Google Scholar 

  • Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size- structured populations. Annu Rev Ecol Syst 15:393–425

    Article  Google Scholar 

  • West-Eberhard MJ (1986) Alternative adaptations, speciation, and phylogeny (a review). Proc Natl Acad Sci USA 83:1388–1392

    Article  PubMed  CAS  Google Scholar 

  • West-Eberhard MJ (1989) Phenotypic plasticity and the evolution of diversity. Annu Rev Ecol Syst 20:249–278

    Article  Google Scholar 

  • West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New York

    Google Scholar 

  • West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Nat Acad Sci USA 102:6543–6549

    Article  PubMed  CAS  Google Scholar 

  • Whiteman HH (1994) Evolution of facultative paedomorphosis in salamanders. Q Rev Biol 69:205–221

    Article  Google Scholar 

  • Whiteman HH (1997) Maintenance of polymorphism promoted by sex-specific fitness payoffs. Evolution 51:2039–2044

    Article  Google Scholar 

  • Whiteman HH, Semlitsch RD (2005) Asymmetric reproductive isolation among polymorphic salamanders. Biol J Linn Soc 86:265–281

    Article  Google Scholar 

  • Whiteman HH, Wissinger SA (2005) Amphibian population cycles and long-term data sets. In: Lannoo ML (ed) Amphibian declines: the conservation status of United States species. University of California Press, Berkeley, pp 177–184

    Google Scholar 

  • Whiteman HH, Wissinger SA, Bohonak AJ (1995) Seasonal movement patterns in a subalpine population of the tiger salamander, Ambystoma tigrinum nebulosum. Can J Zool 72:1780–1787

    Article  Google Scholar 

  • Whiteman HH, Wissinger SA, Brown WS (1996) Growth and foraging consequences of facultative paedomorphosis in the tiger salamander, Ambystoma tigrinum nebulosum. Evol Ecol 10:433–446

    Article  Google Scholar 

  • Whiteman HH, Sheen JP, Johnson E, VanDeusen A, Cargille RT, Sacco T (2003) Heterospecific prey and trophic polyphenism in larval tiger salamanders. Copeia 2003:56–67

    Article  Google Scholar 

  • Whiteman HH, Krenz JD, Semlitsch RD (2006) Intermorph breeding and the potential for reproductive isolation in polymorphic mole salamanders (Ambystoma talpoideum). Behav Ecol Sociobiol 60:52–61

    Article  Google Scholar 

  • Winne CT, Ryan TJ (2001) Aspects of sex-specific differences in the expression of an alternative life cycle in the salamander Ambystoma talpoideum. Copeia 2001:143–149

    Article  Google Scholar 

  • Wilbur HM (1980) Complex life cycles. Annu Rev Ecol Syst 11:67–93

    Article  Google Scholar 

  • Wilbur HM, Collins JP (1973) Ecological aspects of amphibian metamorphosis. Science 182:1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Wissinger SA (1989) Seasonal variation in the intensity of competition and intraguild predation among dragonfly larvae. Ecology 70:1017–1027

    Article  Google Scholar 

  • Wissinger SA, Whiteman HH (1992) Fluctuation in a Rocky Mountain population of salamanders: anthropogenic acidification or natural variation? J Herpetol 26:377–391

    Article  Google Scholar 

  • Wissinger SA, Bohonak AJ, Whiteman HH, Brown WS (1999) Subalpine wetlands in Colorado: habitat permanence, salamander predation and invertebrate communities. In: Bazter DP, Wissinger SA (eds) Invertebrates in freshwater wetlands of North America: ecology and management. Wiley, New York, pp 757–790

    Google Scholar 

  • Wissinger SA, Whiteman HH, Denoël M, Mumford ML, Aubee CB (2010) Consumptive and non-consumptive effects of cannibalism in fluctuating age-structured populations. Ecology 91:549–559

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This long-term research could not have been completed without the support and assistance of numerous colleagues, research assistants, funding agencies, and friends. We particularly thank R.D. Howard for his unending and much needed advice, wisdom, revisions, and patience during the initial phases of this project. W. Brown, A. Benson, J. Boynton, E. Olson, J. Doyle, J. Earl, A. Bohonak, S. Horn, G. McCrabb, R. Moorman, J. Marcus, J. McGrady-Steed, K. Buhn, D. Weigel, G. Maruca, M. Hatfield, C. Eden, H. Grieg, R. Schultheis, S. Mattie, D. Dale, M. Mumford, C. Aubee, E. Bruneau, M. Galatowitsch, M. O’Brien, and S. Thomason provided field and intellectual assistance. P. Waser, J. Lucas, N. Buschhaus, J. Young, M. Brown, A. Bohonak, J. Haydock, J. Doyle, K. Landholt, and J. Earl reviewed previous versions of the manuscript. J. Hetfield, L. Ulrich, K. Hammett, R. Trujillo, J. Newstead, and C. Burton provided intense encouragement. I. Billick, B. Barr, S. Donovan, S. Lohr, T. Allison and L. Swift have provided much needed aid and assistance at the RMBL, and W. Gibbons, R. Semlitsch, D. White, G. Kipphut, and R. Fister patiently supported this work. M. Denoël was a Research Associate at the Fonds de la Recherche Scientifique (FRS-FNRS) during this research. This research was funded by a Purdue David Ross Summer Fellowship, a Purdue Research Foundation Fellowship, the American Museum of Natural History (Theodore Roosevelt Fund), Sigma Xi (Grant in Aid), the Rocky Mountain Biological Laboratory (Lee R. G. Snyder Memorial Fund), the American Society of Ichthyologists and Herpetologists (Helen Gaige Fund), the Animal Behavior Society (ABS Research Grant), the Colorado Division of Wildlife, the American Philosophical Society, the Murray State University Center for Institutional Studies and Research (CISR), a CISR Presidential Research Fellowship, a Fulbright Fellowship (MD), the Fonds National de la Recherche Scientifique (FRS-FNRS grants 1.5.011.03, 1.5.120.04, F.4718.06, 1.5.199.07, 1.5.013.08, and 1.5.010.09) and the National Science Foundation (DEB 9122981 and DEB 0109436 to HW; BSR 8958253, DEB 9407856, and DEB 010893 to SAW; EPI 0132295 to G. Kipphut; and UBM 0531865 to R. Fister).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Whiteman.

Additional information

Communicated by Ross Alford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whiteman, H.H., Wissinger, S.A., Denoël, M. et al. Larval growth in polyphenic salamanders: making the best of a bad lot. Oecologia 168, 109–118 (2012). https://doi.org/10.1007/s00442-011-2076-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-2076-z

Keywords

Navigation