Skip to main content
Log in

Are direct density cues, not resource competition, driving life history trajectories in a polyphenic salamander?

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Polyphenisms, where multiple, discrete, environmentally-cued phenotypes can arise from a single genotype, are extreme forms of phenotypic plasticity. Cue acquisition and interpretation are vital for matching phenotypes to varying environments, but can be difficult if cues are unreliable indicators or if multiple cues are present simultaneously. Facultative paedomorphosis, where juvenile traits are retained at sexual maturity, is a density-dependent polyphenism exhibited by many salamanders. Favorable conditions such as low larval densities and stable hydroperiod delay metamorphosis and promote a paedomorphic strategy. We investigated proximate cues affecting facultative paedomorphosis in order to understand how larval newts (Notophthalmus viridescens louisianensis) assess conspecific density. To isolate the effects of density cues from the effects of resources and agonistic behavior, we caged larval newts in mesocosms in a 2 × 2 factorial design that manipulated both background larval newt densities (high or low) and food levels (ambient or supplemented). We found strong effects of both food and density on caged individuals. Under high densities, caged larvae were more likely to become efts, a long-lasting juvenile terrestrial stage, across both food levels, while paedomorphs were more common under low densities. Though food levels increased growth rates, density had strong independent effects on metamorphic timing and phenotype. Competition for food and space are classical density-dependent processes, but density cues themselves may be a mediator of density-dependent effects on polyphenisms and life history responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson RM, Gordon DM (1982) Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology 85:373–398

    Article  PubMed  Google Scholar 

  • Applebaum SW, Heifetz Y (1999) Density-dependent physiological phase in insects. Annu Rev Entomol 44:317–341

    Article  PubMed  CAS  Google Scholar 

  • Barton K (2018) MuMIn: multi-model inference. R package version 1.40.4

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using {lme4}. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Berner D (2011) Size correction in biology: how reliable are approaches based on (common) principal component analysis? Oecologia 166:961–971

    Article  PubMed  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Brockelman WY (1969) An analysis of density effects and predation in Bufo americanus tadpoles. Ecology 50:632–644

    Article  Google Scholar 

  • Brönmark C, Hansson L (2000) Chemical communication in aquatic systems: an introduction. Oikos 88:1–7

    Article  Google Scholar 

  • Brook BW, Bradshaw CJA (2006) Strength of evidence for density dependence in abundance time series of 1198 species. Ecology 87:1445–1451

    Article  PubMed  Google Scholar 

  • Chivers DP, Smith RJF (1998) Chemical alarm signalling in aquatic predator-prey systems: a review and prospectus. Ecoscience 5:338–352

    Article  Google Scholar 

  • Cisse S, Ghaout S, Mazih A et al (2015) Estimation of density threshold of gregarization of desert locust hoppers from field sampling in Mauritania. Entomol Exp Appl 156:136–148

    Article  Google Scholar 

  • Cole LC (1954) The population consequences of life history phenomena. Q Rev Biol 29:103–137

    Article  PubMed  CAS  Google Scholar 

  • Collins JP, Cheek JE (1983) Effect of food and density on development of typical and cannibalistic salamander larvae in Ambystoma tigrinum nebulosum. Integr Comp Biol 23:77–84

    Google Scholar 

  • Denoël M, Ficetola GF (2014) Heterochrony in a complex world: disentangling environmental processes of facultative paedomorphosis in an amphibian. J Anim Ecol 83:606–615

    Article  PubMed  Google Scholar 

  • Denoël M, Poncin P (2001) The effect of food on growth and metamorphosis of paedomorphs in Triturus alpestris apuanus. Arch fur Hydrobiol 152:661–670

    Article  Google Scholar 

  • Denoël M, Joly P, Whiteman HH (2005) Evolutionary ecology of facultative paedomorphosis in newts and salamanders. Biol Rev Camb Philos Soc 80:663–671

    Article  PubMed  Google Scholar 

  • Denver RJ, Mirhadi N, Phillips M (1998) Adaptive plasticity in amphibian metamorphosis: response of Scaphiopus hammondii tadpoles to habitat desiccation. Ecology 79:1859–1872

    Google Scholar 

  • Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154

    Article  CAS  Google Scholar 

  • Ferrari MCO, Wisenden BD, Chivers DP (2010) Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool 88:698–724

    Article  Google Scholar 

  • Garcia-Berthou E (2001) On the misuse of residuals in ecology: testing regression residual versus the analysis of covariance. J Anim Ecol 70:708–711

    Article  Google Scholar 

  • Gause G (1934) The struggle for existence. Williams and Wilkins, Baltimore

    Book  Google Scholar 

  • Getty T (1996) The maintenance of phenotypic plasticity as a signal detection problem. Am Nat 148:378–385

    Article  Google Scholar 

  • Gilbert JJ (1999) Kairomone-induced morphological defenses in rotifers. In: Tollrian R, Harvell CD (eds) Ecology and evolution of inducible defenses. Princeton University Press, Princeton, pp 127–141

    Google Scholar 

  • Gill DE (1978) The metapopulation ecology of the red-spotted newt, Notophthalmus viridescens (Rafinesque). Ecol Monogr 48:145–166

    Article  Google Scholar 

  • Glennemeier KA, Denver RJ (2002) Role for corticoids in mediating the response of Rana pipiens tadpoles to intraspecific competition. J Exp Zool 292:32–40

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge

    Google Scholar 

  • Grayson KL, Wilbur HM (2009) Sex- and context-dependent migration in a pond-breeding amphibian. Ecology 90:306–312

    Article  PubMed  Google Scholar 

  • Grunt JWG, Bayly I (1981) Predator induction of crests in morphs of the Daphnia carinata King complex. Limnol Oceanogr 26:201–218

    Article  Google Scholar 

  • Hanken J, Wassersug RJ (1981) The visible skeleton. Funct Photogr 16(22–26):44

    Google Scholar 

  • Harris RN (1987a) An experimental study of population regulation in the salamander, Notophthalmus viridescens dorsalis (Urodela: Salamandridae). Oecologia 71:280–285

    Article  PubMed  CAS  Google Scholar 

  • Harris RN (1987b) Density-dependent paedomorphosis in the salamander Notophthalmus viridescens dorsalis. Ecology 68:705–712

    Article  Google Scholar 

  • Harris RN, Alford RA, Wilbur HM (1988) Density and phenology of Notophthalmus viridescens dorsalis in a natural pond. Herpetologica 44:234–242

    Google Scholar 

  • Harrison RG (1980) Dispersal polymorphisms in insects. Annu Rev Ecol Syst 11:95–118

    Article  Google Scholar 

  • Harvell CD (1990) The ecology and evolution of inducible defenses. Q Rev Biol 65:323–340

    Article  PubMed  CAS  Google Scholar 

  • Hassell MP (1975) Density-dependence in single-species populations. J Anim Ecol 44:283

    Article  Google Scholar 

  • Healy W (1974) Population consequences of alternative life histories in Notophthalmus v. viridescens. Copeia 1974:221–229

    Article  Google Scholar 

  • Hoffman EA, Pfennig DW (1999) Proximate causes of cannibalistic polyphenism in larval tiger salamanders. Ecology 80:1076–1080

    Article  Google Scholar 

  • Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394

    Article  Google Scholar 

  • Kuhlmann H-W, Kusch J, Heckman K (1999) Predator-induced defenses in ciliated protozoa. In: Tollrian R, Harvell CD (eds) Ecology and evolution of inducible defenses. Princeton University Press, Princeton, pp 142–159

    Google Scholar 

  • Kuzmin SL (1995) The problem of food competition in amphibians. Herpetol J 5:252–256

    Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2015) Package “lmerTest”

  • Laforsch C, Tollrian R, Gene E (2009) Cyclomorphosis and phenotypic changes. In: Likens GE (ed) Encyclopedia of inland waters. Academic Press, Oxford, pp 1159–1166

    Google Scholar 

  • Lejeune B, Sturaro N, Lepoint G, Denoël M (2018) Facultative paedomorphosis as a mechanism promoting intraspecific niche differentiation. Oikos 127:427–439

    Article  CAS  Google Scholar 

  • Lotka AJ (1932) The growth of mixed populations: two species competing for a food supply. J Washingt Acad Sci 22:461–469

    Google Scholar 

  • Maher JJM, Werner EE, Denver RJ (2013) Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proc R Soc B Biol Sci 280:1–9

    Google Scholar 

  • McCollum SA, Van Buskirk J (1996) Costs and benefits of a predator-induced polyphenism in the gray treefrog Hyla chrysoscelis. Evolution 50:583–593

    Article  PubMed  Google Scholar 

  • Michimae H, Wakahara M (2002) A tadpole-induced polyphenism in the salamander Hynobius retardatus. Evolution 56:2029–2038

    Article  PubMed  Google Scholar 

  • Moczek AP (1998) Horn polyphenism in the beetle Onthophagus taurus: larval diet quality and plasticity in parental investment determine adult body size and male horn morphology. Behav Ecol 9:636–641

    Article  Google Scholar 

  • Morales M, Core Team R (2012) Sciplot: scientific graphing functions for factorial designs. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Moran NA (1992) The evolutionary maintenance of alternative phenotypes. Am Nat 139:971–989

    Article  Google Scholar 

  • Morey S, Reznick D (2000) A comparative analysis of plasticity in larval development in three species of spadefoot toads. Ecology 81:1736

    Article  Google Scholar 

  • Morin PJ (1981) Predatory salamanders reverse the outcome of competition among three species of anuran tadpoles. Science 80(212):1284–1286

    Article  Google Scholar 

  • Newman RA (1987) Effects of density and predation on Scaphiopus couchi tadpoles in desert ponds. Oecologia 71:301–307

    Article  PubMed  CAS  Google Scholar 

  • Newman RA (1992) Adaptive plasticity in amphibian metamorphosis. Bioscience 42:671–678

    Article  Google Scholar 

  • Newman RA (1994) Effects of changing density and food level on metamorphosis of a desert amphibian, Scaphiopus couchii. Ecology 75:1085–1096

    Article  Google Scholar 

  • Nijhout HF (2003) Development and evolution of adaptive polyphenisms. Evol Dev 5:9–18

    Article  PubMed  Google Scholar 

  • Noble G (1926) The Long Island newt: a contribution to the life history of Triturus viridescens. Am Museum Novit 228:1–11

    Google Scholar 

  • Noble GK (1929) Further observations on the life-history of the newt, Triturus viridescens. Am Museum Novit 348:1–22

    Google Scholar 

  • Park D, Propper CR (2001) Repellent function of male pheromones in the red-spotted newt. J Exp Zool 289:404–408

    Article  PubMed  CAS  Google Scholar 

  • Pearl R, Reed LJ (1920) On the rate of growth of the population of the United States since 1790 and its mathematical representation. Proc Natl Acad Sci 6:275–288

    Article  PubMed  CAS  Google Scholar 

  • Pener MP, Simpson SJ (2009) Locust phase polyphenism: an update. Adv Insect Physiol 36(36):1–272

    Google Scholar 

  • Petranka JW (1989a) Density-dependent growth and survival of larval ambystoma: evidence from whole-pond manipulations. Ecology 70:1752–1767

    Article  Google Scholar 

  • Petranka JW (1989b) Chemical interference competition in tadpoles: Does it occur outside laboratory aquaria? Copeia 1989:921–930

    Article  Google Scholar 

  • Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Books, Washington

    Google Scholar 

  • Pfennig D (1990) The adaptive significance of an environmentally-cued developmental switch in an anuran tadpole. Oecologia 85:101–107

    Article  PubMed  Google Scholar 

  • Pfennig DW (1992) Proximate and functional causes of polyphenism in an anuran tadpole. Funct Ecol 6:167–174

    Article  Google Scholar 

  • Pope PH (1921) Some doubtful points in the life-history of Notophthalmus viridescens. Copeia 91:14–15

    Article  Google Scholar 

  • Pope PH (1924) The life-history of the common water-newt (Notophthalmus viridescens), together with observations on the sense of smell. Ann Carnegie Museum 15:305–368

    Google Scholar 

  • Pope PH (1928) The life-history of Triturus viridescens—some further notes. Copeia 168:61–73

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing

  • Reilly SM (1987) Ontogeny of the hyobranchial apparatus in the salamanders Ambystoma talpoideum (Ambystomatidae) and Notophthalmus viridescens (Salamandridae): the ecological morphology. J Morphol 214:205–214

    Article  Google Scholar 

  • Resetarits WJ Jr, Silberbush A (2016) Local contagion and regional compression: habitat selection drives spatially explicit, multiscale dynamics of colonisation in experimental metacommunities. Ecol Lett 19:191–200

    Article  PubMed  Google Scholar 

  • Richter JAR, Martin L, Beachy CK (2009) Increased larval density induces accelerated metamorphosis independently of growth rate in the frog Rana sphenocephala. J Herpetol 43:551–554

    Article  PubMed  Google Scholar 

  • Rohr JR, Park D, Sullivan AM et al (2005) Operational sex ratio in newts: field responses and characterization of a constituent chemical cue. Behav Ecol 16:286–293

    Article  Google Scholar 

  • Rot-Nikcevic I, Denver RJ, Wassersug RJ (2005) The influence of visual and tactile stimulation on growth and metamorphosis in anuran larvae. Funct Ecol 19:1008–1016

    Article  Google Scholar 

  • Rot-Nikcevic I, Taylor CN, Wassersug RJ (2006) The role of images of conspecifics as visual cues in the development and behavior of larval anurans. Behav Ecol Sociobiol 60:19–25

    Article  Google Scholar 

  • Ryan TJ, Semlitsch RD (2003) Growth and the expression of alternative life cycles in the salamander Ambystoma talpoideum (Caudata: Ambystomatidae). Biol J Linn 80:639–646

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scott DE (1990) Effects of larval density in Ambystoma opacum: an experiment in large-scale field enclosures. Ecology 71:296–306

    Article  Google Scholar 

  • Semlitsch RD (1987) Paedomorphosis in Ambystoma talpoideum: effects of density, food, and pond drying. Ecology 68:994–1002

    Article  Google Scholar 

  • Semlitsch RD, Gibbons JW (1985) Phenotypic variation in metamorphosis and paedomorphosis in the salamander Ambystoma talpoideum. Ecology 66:1123–1130

    Article  Google Scholar 

  • Semlitsch RD, Reichling SB (1989) Density-dependent injury in larval salamanders. Oecologia 81:100–103

    Article  PubMed  Google Scholar 

  • Semlitsch RD, Scott DE, Pechmann HK (1988) Time and size at metamorphosis related to adult fitness in Ambystoma talpoideum. Ecology 69:184–192

    Article  Google Scholar 

  • Semlitsch RD, Harris RN, Wilbur HM (1990) Paedomorphosis in Ambystoma talpoideum: maintenance of population variation and alternative life-history pathways. Evolution 44:1604–1613

    PubMed  Google Scholar 

  • Sprules WG (1974) The adaptive significance of paedogenesis in North American species of Ambystoma (Amphibia: Caudata): an hypothesis. Can J Zool 52:393–400

    Article  Google Scholar 

  • Stearns SC, Koella JC (1986) The evolution of phenotypic plasticity in life-history traits: predictions of reaction norms for age and size at maturity. Evolution 40:893

    Article  PubMed  Google Scholar 

  • Takahashi MK, Parris MJ (2008) Life cycle polyphenism as a factor affecting ecological divergence within Notophthalmus viridescens. Oecologia 158:23–34

    Article  PubMed  Google Scholar 

  • Takahashi MK, Takahashi YY, Parris MJ (2011) Rapid change in life-cycle polyphenism across a subspecies boundary of the Eastern Newt, Notophthalmus viridescens. J Herpetol 45:379–384

    Article  Google Scholar 

  • Turchin P (1999) Population regulation: a synthetic view. Oikos 84:153–159

    Article  Google Scholar 

  • Uvarov BP (1921) A revision of the genus Locusta, L. (= Pachytylus, Fieb.), with a new theory as to the periodicity and migrations of locusts. Bull Entomol Res 12:135–163

    Article  Google Scholar 

  • Van Buskirk J, Smith DC (1991) Density-dependent population regulation in a salamander. Ecology 72:1747–1756

    Article  Google Scholar 

  • van Donk E, Ianora A, Vos M (2011) Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia 668:3–19

    Article  CAS  Google Scholar 

  • Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. Corresp Math Phys 10:113–121

    Google Scholar 

  • Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118:558–560

    Article  Google Scholar 

  • Walls SC, Jaeger RG (1987) Aggression and exploitation as mechanisms of competition in larval salamanders. Can J Zool 65:2938–2944

    Article  Google Scholar 

  • Warton DI, Hui FKC (2011) The arcsine is asinie: the analysis of porportions in ecology. Ecology 92:3–10

    Article  PubMed  Google Scholar 

  • Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Syst 15:393–425

    Article  Google Scholar 

  • West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278

    Article  Google Scholar 

  • Whiteman HH (1994) Evolution of facultative paedomorphosis in salamanders. Q Rev Biol 69:205–221

    Article  Google Scholar 

  • Whiteman HH, Wissinger SA, Denoel M et al (2012) Larval growth in polyphenic salamanders: making the best of a bad lot. Oecologia 168:109–118

    Article  PubMed  CAS  Google Scholar 

  • Wickham H (2009) ggplot2: Elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wilbur HM, Collins JP (1973) Ecological aspects of amphibian metamorphosis. Science 182:1305–1314

    Article  PubMed  CAS  Google Scholar 

  • Wildy EL, Chivers DP, Kiesecker JM, Blaustein AR (2001) The effects of food level and conspecific density on biting and cannibalism in larval long-toed salamanders, Ambystoma macrodactylum. Oecologia 128:202–209

    Article  PubMed  Google Scholar 

  • Wisenden BD (2000) Olfactory assessment of predation risk in the aquatic environment. Philos Trans R Soc B Biol Sci 355:1205–1208

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Tyson Research Center and Washington University in St. Louis, especially K. Smith and B. Schall, for allowing us to use their facilities and providing a stimulating environment. Also, B. Biro helped substantially with collecting, L. Eveland & M. Pintar contributed to the study in many ways, J. Hoeksema provided advice on mixed models, and L. Fuller and B. Mikah provided encouragement. Also, thanks to the National Science Foundation (DEB-0516298), Texas Tech University, The University of Mississippi, and the Henry L. and Grace Doherty Foundation. This research conformed to institutional guidelines (IACUC protocol 14–028) and all state and federal regulations (MDC permit no. 15680).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. Bohenek.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Appendix

Appendix

See Tables 2 and 3.

Table 2 Summary of alternative models in lme4 notation
Table 3 Summary of complete model parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohenek, J.R., Resetarits, W.J. Are direct density cues, not resource competition, driving life history trajectories in a polyphenic salamander?. Evol Ecol 32, 335–357 (2018). https://doi.org/10.1007/s10682-018-9941-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-018-9941-8

Keywords

Navigation