Skip to main content
Log in

Growth and foraging consequences of facultative paedomorphosis in the tiger salamander,Ambystoma tigrinum nebulosum

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

Facultative paedomorphosis in salamanders occurs when larvae respond to varying environmental conditions by either metamorphosing into terrestrial metamorphic adults or retaining their larval morphology to become sexually mature paedomorphic adults. Several hypotheses have been proposed for the evolutionary maintenance of this environmentally induced dimorphism, but few data are available to assess them adequately. We studied a montane population of the tiger salamander,Ambystoma tigrinum nebulosum, and measured the adult growth rate and body condition across three growing seasons to assess the relative costs and benefits of each morph. Metamorphic adults grew more than paedomorphic adults in terms of snout—vent length across years and in weight within years. Dietary analyses and foraging experiments revealed some of the proximate factors that may underlie these differential growth patterns. Across all prey, metamorphs had significantly higher biomass and calories per stomach sample than paedomorphs. Metamorphic diets primarily consisted of the fairy shrimpBranchinecta coloradensis, whereas paedomorphic diets contained a variety of benthic and terrestrial invertebrates. Foraging experiments revealed that both morphs are more successful at capturing fairy shrimp relative to other prey types and both show high electivity toward this prey. However, fairy shrimp occurred only in non-permanent ponds and thus are inaccessible to paedomorphs, which can survive only in permanent ponds. Paedomorphs also experience higher levels of intraspecific competition with large larvae in permanent ponds than metamorphs do in non-permanent ponds. Thus, metamorphs obtain a growth advantage over paedomorphs by foraging in non-permanent ponds that contain fairy shrimp and have reduced intraspecific competition. These results suggest that paedomorphs should have decreased fitness relative to metamorphs, primarily because metamorphs can move into the best habitats for growth. The net fitness effect of morph-specific differences in dispersal depend on whether there are trade-offs with other life history traits. Nonetheless, because the relative benefit of metamorph dispersal will change with environmental conditions in permanent ponds and the surrounding habitat, the relative fitness payoff to each morph should track changes in the environment. Thus, facultative paedomorphosis may be maintained in part by variable, environmentally-specific fitness payoffs to each morph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrech, P., Gould, S. J., Oster, G. F. and Wake, D. B. (1979) Size and shape in ontogeny and phylogeny.Paleobiology 5, 296–317.

    Google Scholar 

  • Arak, A. (1983) Male—male competition and mate choice in anuran amphibians. InMate Choice (P. Bateson, ed.), pp. 181–210. Cambridge University Press, Cambridge.

    Google Scholar 

  • Behler, J. L. and King, F. W. (1979)The Audubon Society Field Guide to North American Reptiles and Amphibians. Alfred A. Knopf, New York.

    Google Scholar 

  • Bradshaw, A. D. (1965) Evolutionary significance of phenotypic plasticity in plants.Adv. Genet. 13, 115–55.

    Google Scholar 

  • Brandon, R. A. and Bremer, D. J. (1966) Neotenic newts,Notophthalmus viridescens louisianensis, in southern Illinois.Herpetologica 22, 213–7.

    Google Scholar 

  • Caswell, H. (1983) Phenotypic plasticity in life-history traits: demographic effects and evolutionary consequences.Am. Zool. 23, 35–46.

    Google Scholar 

  • Clutton-Brock, T. H. (1988)Reproductive Success. The University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Collins, J. P. (1981) Distribution, habitats, and life history variation in the tiger salamander,Ambystoma tigrinum, in east-central and southeast Arizona.Copeia 1981, 666–75.

    Google Scholar 

  • Collins, J. P. and Cheek, J. E. (1983) Effect of food and density on development of typical and cannibalistic salamander larvae inAmbystoma tigrinum nebulosum.Am. Zool. 23, 77–84.

    Google Scholar 

  • Collins, J. P., Zerba, K. E. and Sredl, M. J. (1993) Shaping intraspecific variation: development, ecology and the evolution of morphology and life history variation in tiger salamanders.Genetica 89, 167–83.

    Google Scholar 

  • Crespi, B. J. (1988) Adaptation, compromise, and constraint: the development, morphometrics, and behavioral basis of a fighter-flier polymorphism in maleHoplothrips karnyi (Insecta: Thysanoptera).Behav. Ecol. Sociobiol. 23, 93–104.

    Google Scholar 

  • Cummins, K. W. and Wuycheck, J. C. (1971) Caloric equivalents for investigations in ecological energetics.Verh. Int. Verein. Limnol. 18, 1–158.

    Google Scholar 

  • Dodson, S. I. (1970) Complementary feeding niches sustained by size-selective predation.Limnol. Oceanogr. 15, 131–7.

    Google Scholar 

  • Dominey, W. J. (1980) Female mimicry in male bluegill sunfish — a genetic polymorphism?Nature 284, 546–8.

    Google Scholar 

  • Dominey, W. J. (1981) Maintenance of female mimicry as a reproductive strategy in bluegill sunfish (Lepomis macrochirus).Environ. Biol. Fish. 6, 59–64.

    Google Scholar 

  • Duméril, A. H. A. (1870) Création d'une race blanche d'axolotl à la ménagerie des reptiles du Muséum d'Historie Naturelle, et remarques sur la transformation de ces batraciens.C.R. Acad. Sci., Paris 70, 782–5.

    Google Scholar 

  • Duméril, A. H. A. (1872) Notes complémentaires sur les axolotls.Mem. Soc. Linn. N. Fr. 2, 248–51.

    Google Scholar 

  • Eberhard, W. G. (1979) The function of horns inPodischnus agenor (Dynastinae) and other beetles. InSexual Selection and Reproductive Competition in Insects (M. S. Blum and N. A. Blum, eds), pp. 231–58. Academic Press, New York, NY.

    Google Scholar 

  • Gould, S. J. (1977)Ontogeny and Phylogeny. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Grafen, A. (1988) On the uses of data on lifetime reproductive success. InReproductive Success (T. H. Clutton-Brock, ed.), pp. 454–71. The University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Gross, M. R. (1982) Sneakers, satellites, and parentals: polymorphic mating strategies in North American sunfishes.Z. Tierpsychol. 60, 1–26.

    Google Scholar 

  • Gross, M. R. (1991) Salmon breeding behavior and life history evolution in changing environments.Ecology 72, 1180–6.

    Google Scholar 

  • Harris, R. N. (1987) Density-dependent paedomorphosis in the salamanderNotophthalmus viridescens dorsalis.Ecology 68, 705–12.

    Google Scholar 

  • Harris, R. N., Semlitsch, R. D., Wilbur, H. M. and Fauth, J. E. (1990) Local variation in the genetic basis of paedomorphosis in the salamanderAmbystoma talpoideum.Evolution 44, 1588–603.

    Google Scholar 

  • Harrison, R. G. (1980) Dispersal polymorphisms in insects.Annu. Rev. Ecol. Syst. 11, 95–118.

    Google Scholar 

  • Ivlev, V. S. (1961)Experimental Ecology of the Feeding of Fishes. Yale University Press, New Haven, CT.

    Google Scholar 

  • Jackson, M. E. and Semlitsch, R. D. (1993) Paedomorphosis in the salamanderAmbystoma talpoideum: effects of a fish predator.Ecology 74, 342–50.

    Google Scholar 

  • Kaplan, R. H. and Salthe, S. N. (1979) The allometry of reproduction: an empirical view in salamanders.Am. Nat. 113, 671–89.

    Google Scholar 

  • Lauder, G. V. and Shaffer, H. B. (1986) Functional design of the feeding mechanism in lower vertebrates: unidirectional and bidirectional flow-system in the tiger salamander.Zool. J. Linn. Soc. 88, 277–90.

    Google Scholar 

  • Levins, R. (1968)Evolution in Changing Environments. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Lively, C. M. (1986a) Canalization versus developmental conversion in a spatially variable environment.Am. Nat. 128, 561–72.

    Google Scholar 

  • Lively, C. M. (1986b) Competition, comparative life histories, and maintenance of shell dimorphism in a barnacle.Ecology 67, 858–64.

    Google Scholar 

  • Lively, C. M. (1986c) Predator-induced shell dimorphism in the acorn barnacleChthamalus anisopoma.Evolution 40, 232–42.

    Google Scholar 

  • Lloyd, D. G. (1984) Variation strategies of plants in heterogeneous environments.Biol. J. Linn. Soc. 21, 357–85.

    Google Scholar 

  • McKinney, M. L. and McNamara, K. J. (1991)Heterochrony: The Evolution of Ontogeny. Plenum Press, New York, NY.

    Google Scholar 

  • Moran, N. A. (1992) The evolutionary maintenance of alternative phenotypes.Am. Nat. 139, 971–89.

    Google Scholar 

  • Pfennig, D. (1990) The adaptive significance of an environmentally-cued developmental switch in an anuran tadpole.Oecologia 85, 101–7.

    Google Scholar 

  • Pfennig, D. W. (1992) Polyphenism in spadefoot toad tadpoles as a locally-adjusted evolutionary stable strategy.Evolution 46, 1408–20.

    Google Scholar 

  • Pfennig, D. W. and Collins, J. P. (1993) Kinship affects morphogenesis in cannibalistic salamanders.Nature 362, 836–8.

    PubMed  Google Scholar 

  • Pfennig, D. W., Loeb, M. L. G. and Collins, J. P. (1991) Pathogens as a factor limiting the spread of cannibalism in tiger salamanders.Oecologia 88, 161–6.

    Google Scholar 

  • Roff, D. A. (1986) The evolution of wing dimorphism in insects.Evolution 40 1009–20.

    Google Scholar 

  • Roff, D. A. (1994) Habitat persistence and the evolution of wing dimorphism in insects.Am. Nat. 144, 772–98.

    Google Scholar 

  • Roff, D. A. (In press) The evolution of threshold traits in animals.Q. Rev. Biol.

  • Roff, D. A. and Fairbairn, D. J. (1993) The evolution of alternative morphologies: fitness and wing morphology in male sand crickets.Evolution 47, 1572–84.

    Google Scholar 

  • Scheiner, S. M. (1993) Genetics and evolution of phenotypic plasticity.Annu. Rev. Ecol. Syst. 24, 35–68.

    Google Scholar 

  • Schlichting, C. D. (1986) The evolution of phenotypic plasticity in plants.Annu. Rev. Ecol. Syst. 17, 667–93.

    Google Scholar 

  • Semlitsch, R. D. (1985) Reproductive strategy of a facultatively paedomorphic salamanderAmbystoma talpoideum.Oecologia 65, 305–13.

    Google Scholar 

  • Semlitsch, R. D. (1987) Paedomorphosis inAmbystoma talpoideum: effects of density, food, and pond drying.Ecology 68, 994–1002.

    Google Scholar 

  • Semlitsch, R. D. and Gibbons, J. W. (1985) Phenotypic variation in metamorphosis and paedomorphosis in the salamanderAmbystoma talpoideum.Ecology 66, 1123–30.

    Google Scholar 

  • Semlitsch, R. D. and Wilbur, H. M. (1989) Artificial selection for paedomorphosis in the salamanderAmbystoma talpoideum.Evolution 43, 105–12.

    Google Scholar 

  • Semlitsch, R. D., Harris, R. N. and Wilbur, H. M. (1990) Paedomorphosis inAmbystoma talpoideum: maintenance of population variation and alternative life-history pathways.Evolution 44, 1604–13.

    Google Scholar 

  • Sexton, O. J. and Bizer, J. R. (1978) Life history patterns ofAmbystoma tigrinum in montane Colorado.Am. Midl. Nat. 99, 101–18.

    Google Scholar 

  • Shaffer, H. B. (1984) Evolution in a paedomorphic lineage. II. Allometry and form in the Mexican ambystomatid salamanders.Evolution 38, 1207–18.

    Google Scholar 

  • Smith, H. M. (1989) Discovery of the axolotl and its early history in biological research. InDevelopmental Biology of the Axolotl (J. B. Armstrong and G. M. Malacinski, eds), pp. 3–12. Oxford University Press, New York, NY.

    Google Scholar 

  • Smith-Gill, S. J. (1983) Developmental plasticity: developmental conversion versus phenotypic modulation.Am. Zool. 23, 47–55.

    Google Scholar 

  • Snyder, R. C. (1956) Comparative features of the life histories ofAmbystoma gracile (Baird) from populations at low and high altitudes.Copeia 1956, 41–50.

    Google Scholar 

  • Sokal, R. R. and Rohlf, F. J. (1981)Biometry. W. H. Freeman Press, San Francisco, CA.

    Google Scholar 

  • Sprules, W. G. (1972) Effects of size-selective predation and food competition on high altitude zooplankton communities.Ecology 53, 375–86.

    Google Scholar 

  • Sprules, W. G. (1974a) The adaptive significance of paedogenesis in the North American species ofAmbystoma (Amphibia: Caudata): an hypothesis.Can. J. Zool. 52, 393–400.

    Google Scholar 

  • Sprules, W. G. (1974b) Environmental factors and the incidence of neoteny inAmbystoma gracile (Baird) (Amphibia: Caudata).Can. J. Zool. 52, 1545–52.

    PubMed  Google Scholar 

  • Thompson, J. D. (1991) Phenotypic plasticity as a component of evolutionary change.Trends Ecol. Evol. 6, 246–9.

    Google Scholar 

  • Werner, E. E. (1986) Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation.Am. Nat. 128, 319–41.

    Google Scholar 

  • West-Eberhard, M. J. (1989) Phenotypic plasticity and the origins of diversity.Annu. Rev. Ecol. Syst. 20, 249–78.

    Google Scholar 

  • Whiteman, H. H. (1994) Evolution of facultative paedomorphosis in salamanders.Q. Rev. Biol. 69, 205–21.

    Google Scholar 

  • Whiteman, H. H., Wissinger, S. A. and Bohonak, A. J. (1994) Seasonal movement patterns in a subalpine population of the tiger salamander,Ambystoma tigrinum nebulosum.Can. J. Zool. 72, 1780–7.

    Google Scholar 

  • Wilbur, H. M. (1980) Complex life cycles.Annu. Rev. Ecol. Syst. 11, 67–93.

    Google Scholar 

  • Wilbur, H. M. (1984) Complex life cycles and community organization in amphibians. InA New Ecology: Novel Approaches to Interactive Systems (P. W. Price, C. N. Slobodchikoff and W. S. Gaud, eds), pp. 195–224. John Wiley and Sons, New York, NY.

    Google Scholar 

  • Wilbur, H. M. (1990) Coping with chaos: toads in ephemeral ponds.Trends Ecol. Evol. 5, 37.

    Google Scholar 

  • Wilbur, H. M. and Collins, J. P. (1973) Ecological aspects of amphibian metamorphosis.Science 182, 1305–14.

    Google Scholar 

  • Wissinger, S. A. and Whiteman, H. H. (1992) Fluctuation in a Rocky Mountain population of salamanders: anthropogenic acidification or natural variation?J. Herpetol. 26, 377–91.

    Google Scholar 

  • Zerba, K. E. (1989) Individual variation in diet of larval tiger salamanders (Ambystoma tigrinum nebulosum) in Arizona. PhD dissertation, Arizona State University, Flagstaff.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whiteman, H.H., Wissinger, S.A. & Brown, W.S. Growth and foraging consequences of facultative paedomorphosis in the tiger salamander,Ambystoma tigrinum nebulosum . Evol Ecol 10, 433–446 (1996). https://doi.org/10.1007/BF01237728

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01237728

Keywords

Navigation