Skip to main content
Log in

Offspring size and timing of hatching determine survival and reproductive output in a lizard

  • Population ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Selection on offspring size and timing of birth or hatching could have important consequences for maternal investment strategies. Here we show consistent viability selection on hatchling body length across 2 consecutive years in a lizard that lays several clutches per season. There was no effect of hatching date on survival to maturity. However, both early hatching and large hatchling size increased adult size, which has a positive effect on total reproductive output. Earlier hatching also led to an earlier onset of reproduction. Overall, increased survival probability for large hatchlings and a positive effect of clutch size on recruitment suggest consistent directional selection on both egg size and clutch size within and across years. Because offspring size and timing of hatching are strongly affected by environmental and maternal effects, there should be potential for strong transgenerational effects on reproductive output in this species. We briefly discuss the implications of these results for the evolutionary ecology of maternal investment and population fluctuations in short-lived lizards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adolph SC, Porter WP (1996) Growth, seasonality, and lizard life histories: Age and size at maturity. Oikos 77:267–278

    Article  Google Scholar 

  • Ballinger RE (1977) Reproductive strategies–food availability as a source of proximal variation in a lizard. Ecology 58:628–635

    Article  Google Scholar 

  • Beckerman A, Benton TG, Ranta E, Kaitala V, Lundberg P (2002) Population dynamic consequences of delayed life history effects. Trends Ecol Evol 17:263–269

    Article  Google Scholar 

  • Beckerman AP, Benton TG, Lapsley CT, Koesters N (2006) How effective are maternal effects at having effects? Proc R Soc Lond B 273:485–492

    Article  Google Scholar 

  • Benton TG, Plaistow SJ, Beckerman AP, Lapsley CT, Littlejohns S (2005) Changes in maternal investment in eggs can affect population dynamics. Proc R Soc Lond B 272:1351–1356

    Article  CAS  Google Scholar 

  • Benton TG, Plaistow SJ, Coulson TN (2006) Complex population dynamics and complex causation: devils, details and demography. Proc R Soc Lond B 273:1173–1181

    Article  Google Scholar 

  • Benton T, St Clair J, Plaistow S (2008) Maternal effects mediated by maternal age: from life histories to population dynamics. J Anim Ecol 77:1038–1046

    Article  CAS  PubMed  Google Scholar 

  • Blows MW, Brooks R (2003) Measuring nonlinear selection. Am Nat 162:815–820

    Article  PubMed  Google Scholar 

  • Brodie ED, Moore AJ, Janzen FJ (1995) Visualizing and quantifying natural selection. Trends Ecol Evol 10:313–318

    Article  Google Scholar 

  • Brown GP, Shine R (2005) Female phenotype, life history, and reproductive success in free-ranging snakes (Tropidonophis mairii). Ecology 86:2763–2770

    Article  Google Scholar 

  • Brown GP, Shine R (2007) Repeatability and heritability of reproductive traits in free-ranging snakes. J Evol Biol 20:588–596

    Article  CAS  PubMed  Google Scholar 

  • Brown GP, Shine R (2009) Beyond size-number trade-offs: clutch size as a maternal effect. Philos Trans R Soc Lond B 364:1097–1106

    Article  Google Scholar 

  • Calsbeek R, Sinervo B (2007) Correlational selection on lay date and life-history traits: experimental manipulations of territory and nest site quality. Evolution 61:1071–1083

    Article  PubMed  Google Scholar 

  • Cogger HG (1969) A study of the ecology and biology of the mallee dragon (Amphibolurus fordi) and its adaptations to survival in an arid environment. Dissertation, Macquarie University, Sydney, Australia

  • Cogger HG (1974) Thermal relations of Mallee dragon Amphibolurus fordi (Lacertilia-Agamidae). Aust J Zool 22:319–339

    Article  Google Scholar 

  • Cogger HG (1978) Reproductive-cycles, fat-body cycles and socio-sexual behavior in the Mallee dragon, Amphibolurus fordi (Lacertilia-Agamidae). Aust J Zool 26:653–672

    Article  Google Scholar 

  • Descamps S, Boutin S, Berteaux D, McAdam AG, Gaillard J-M (2008) Cohort effects in red squirrels: the influence of density, food abundance and temperature on future survival and reproductive success. J Anim Ecol 77:305–314

    Article  PubMed  Google Scholar 

  • Diaz JA, Perez-Tris J, Telleria JL, Carbonell R, Santos T (2005) Reproductive investment of a lacertid lizard in fragmented habitat. Cons Biol 19:1578–1585

    Article  Google Scholar 

  • Dickman CR, Letnic M, Mahon PS (1999) Population dynamics of two species of dragon lizards in arid Australia: the effects of rainfall. Oecologia 119:357–366

    Article  Google Scholar 

  • Driscoll DA, Henderson MK (2008) How many common reptile species are fire specialists? A replicated natural experiment highlights the predictive weakness of a fire succession model. Biol Cons 141:460–471

    Article  Google Scholar 

  • Einum S, Fleming IA (2000) Selection against late emergence and small offspring in Atlantic salmon (Salmo salar). Evolution 54:628–639

    CAS  PubMed  Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Prentice Hall, Essex

    Google Scholar 

  • Garant D, Kruuk LEB, McCleery RH, Sheldon BC (2007) The effects of environmental heterogeneity on multivariate selection on reproductive traits in female great tits. Evolution 61:1546–1559

    Article  PubMed  Google Scholar 

  • Ginzburg L, Colyvan M (2004) Ecological orbits. How planets move and populations grow. Oxford University Press, New York

    Google Scholar 

  • Inchausti P, Ginzburg LR (2009) Maternal effects mechanism of population cycling: a formidable competitor to the traditional predator–prey view. Philos Trans R Soc Lond B 364:1117–1124

    Article  Google Scholar 

  • Janzen FJ, Stern HS (1998) Logistic regression for empirical studies of multivariate selection. Evolution 52:1564–1571

    Article  Google Scholar 

  • Kaplan RH, Phillips PC (2006) Ecological and developmental context of natural selection: maternal effects and thermally induced plasticity in the frog Bombina orientalis. Evolution 60:142–156

    PubMed  Google Scholar 

  • Kerr TD, Boutin S, Lamontagne JM, McAdam AG, Humphries MM (2007) Persistent maternal effects on juvenile survival in North American red squirrels. Biol Lett 3:289–291

    Article  PubMed  Google Scholar 

  • Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, Hoang A, Gibert P, Beerli P (2001) The strength of phenotypic selection in natural populations. Am Nat 157:245–261

    Google Scholar 

  • Kokko H, Lopez-Sepulcre A (2007) The ecogenetic link between demography and evolution: can we bridge the gap between theory and data? Ecol Lett 10:773–782

    Article  PubMed  Google Scholar 

  • Lancaster LT, Hazard LC, Clobert J, Sinervo BR (2008) Corticosterone manipulation reveals differences in hierarchical organization of multidimensional reproductive trade-offs in r-strategist and K-strategist females. J Evol Biol 21:556–565

    Article  CAS  PubMed  Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    Article  Google Scholar 

  • Letnic M, Dickman CR, Tischler MK, Tamayo B, Beh CL (2004) The responses of small mammals and lizards to post-fire succession and rainfall in arid Australia. J Arid Env 59:85–114

    Article  Google Scholar 

  • Lindström J (1999) Early development and fitness in birds and mammals. Trends Ecol Evol 14:343–348

    Article  PubMed  Google Scholar 

  • Lorenzon P, Clobert J, Massot M (2001) The contribution of phenotypic plasticity to adaptation in Lacerta vivipara. Evolution 55:392–404

    CAS  PubMed  Google Scholar 

  • Lummaa V, Tremblay M (2003) Month of birth predicted reproductive success and fitness in pre-modern Canadian women. Proc R Soc Lond B 270:2355–2361

    Article  Google Scholar 

  • Madsen T, Shine R (1998) Quantity or quality? Determinants of maternal reproductive success in tropical pythons (Liasis fuscus). Proc R Soc Lond B 265:1521–1525

    Article  Google Scholar 

  • Meylan S, Clobert J (2005) Is corticosterone-mediated phenotype development adaptive? Maternal corticosterone treatment enhances survival in male lizards. Horm Behav 48:44–52

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Cuthill ICC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605

    Article  PubMed  Google Scholar 

  • Oksanen TA, Jokinen I, Koskela E, Mappes T, Vilpas H (2003) Manipulation of offspring number and size: benefits of large body size at birth depend upon the rearing environment. J Anim Ecol 72:321–330

    Article  Google Scholar 

  • Olsson M, Madsen T (2001) Between-year variation in determinants of offspring survival in the sand lizard, Lacerta agilis. Funct Ecol 15:443–450

    Article  Google Scholar 

  • Pelletier F, Clutton-Brock T, Pemberton J, Tuljapurkar S, Coulson T (2007) The evolutionary demography of ecological change: linking trait variation and population growth timing of birds breeding season. Ibis 112:242

    Google Scholar 

  • Pelletier F, Garant D, Hendry AP (2009) Eco-evolutionary dynamics. Philos Trans R Soc Lond B 364:1483–1489

    Article  CAS  Google Scholar 

  • Perrins CM (1970) The timing of birds’ breeding seasons. Ibis 112:242–255

    Google Scholar 

  • Phillips PC, Arnold SJ (1989) Visualizing multivariate selection. Evolution 43:1209–1222

    Article  Google Scholar 

  • Räsänen K, Kruuk LEB (2007) Maternal effects and evolution at ecological time-scales. Funct Ecol 21:408–421

    Article  Google Scholar 

  • Schluter D (1988) Estimating the Form of natural selection on a quantitative trait. Evolution 42:849–861

    Article  Google Scholar 

  • Schluter D, Nychka D (1994) Exploring fitness surfaces. Am Nat 143:597–616

    Article  Google Scholar 

  • Sheldon BC, Kruuk LEB, Merilä J (2003) Natural selection and inheritance of breeding time and clutch size in the collared flycatcher. Evolution 57:406–420

    CAS  PubMed  Google Scholar 

  • Sinervo B (1999) Mechanistic analysis of natural selection and a refinement of Lack’s and Williams’s principles. Am Nat 154:S26–S42

    Article  Google Scholar 

  • Sinervo B, Doughty P (1996) Interactive effects of offspring size and timing of reproduction on offspring reproduction: experimental, maternal, and quantitative genetic aspects. Evolution 50:1314–1327

    Article  Google Scholar 

  • Sinervo B, Lively C (1996) The rock-paper-scissors game and the evolution of alternative mating strategies. Nature 380:240–243

    Article  CAS  Google Scholar 

  • Sinervo B, McAdam AG (2008) Maturational costs of reproduction due to clutch size and ontogenetic conflict as revealed in the invisible fraction. Proc R Soc Lond B 275:629–638

    Article  Google Scholar 

  • Sinervo B, Doughty P, Huey RB, Zamudio K (1992) Allometric engineering—a causal-analysis of natural-selection on offspring size. Science 258:1927–1930

    Article  PubMed  Google Scholar 

  • Sinervo B, Bleay C, Adamopolou C (2001) Social causes of correlational selection and the resolution of a heritable throat color polymorphism in a lizard. Evolution 55:2040–2052

    CAS  PubMed  Google Scholar 

  • Svensson E (1997) Natural selection on avian breeding time: Causality, fecundity-dependent, and fecundity-independent selection. Evolution 51:1276–1283

    Article  Google Scholar 

  • Svensson E, Sinervo B (2000) Experimental excursions on adaptive landscapes: Density-dependent selection on egg size. Evolution 54:1396–1403

    CAS  PubMed  Google Scholar 

  • Svensson EI, Sinervo B (2004) Spatial scale and temporal component of selection in side-blotched lizards. Am Nat 163:726–734

    Article  PubMed  Google Scholar 

  • Svensson E, Sinervo B, Comendant T (2001) Condition, genotype-by-environment interaction and correlational selection in lizard life-histopry morphs. Evolution 55:2053–2069

    CAS  PubMed  Google Scholar 

  • Uller T (2008) Developmental plasticity and the evolution of parental effects. Trends Ecol Evol 23:432–438

    Article  PubMed  Google Scholar 

  • Uller T, Odierna GMO (2008) Sex ratio variation and sex determination in the mallee dragon Ctenophorus fordi. Integr Zool 3:157–165

    Article  Google Scholar 

  • Uller T, Olsson M (2006a) Direct exposure to corticosterone during embryonic development influences behaviour in an ovoviviparous lizard. Ethology 112:390–397

    Article  Google Scholar 

  • Uller T, Olsson M (2006b) No seasonal sex-ratio shift despite sex-specific fitness returns of hatching date in a lizard with genotypic sex determination. Evolution 60:2131–2136

    PubMed  Google Scholar 

  • Uller T, Olsson M (2009) Offspring size-number trade-off in a lizard with small clutch sizes: tests of invariants and potential implications. Evol Ecol 23:363–372

    Article  Google Scholar 

  • Uller T, Massot M, Richard M, Lecomte J, Clobert J (2004) Long-lasting fitness consequences of prenatal sex ratio in a viviparous lizard. Evolution 58:2511–2516

    PubMed  Google Scholar 

  • Uller T, Isaksson C, Olsson M (2006) Immune challenge reduces reproductive output and growth in a lizard. Funct Ecol 20:873–879

    Article  Google Scholar 

  • Uller T, Astheimer L, Olsson M (2007) Consequences of maternal yolk testosterone for offspring development and survival: experimental test in a lizard. Funct Ecol 21:544–551

    Article  Google Scholar 

  • Uller T, Hollander J, Astheimer L, Olsson M (2009) Sex-specific developmental plasticity in response to yolk corticosterone in an oviparous lizard. J Exp Biol 212:1087–1091

    Article  PubMed  Google Scholar 

  • Verhulst S, Nilsson JA (2008) The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Philos Trans R Soc Lond B 363:399–410

    Article  Google Scholar 

  • Warner DA, Andrews RM (2002) Laboratory and field experiments identify sources of variation in phenotypes and survival of hatchling lizards. Biol J Linn Soc 76:105–124

    Article  Google Scholar 

  • Warner DA, Shine R (2005) The adaptive significance of temperature-dependent sex determination: experimental tests with a short-lived lizard. Evolution 59:2209–2221

    PubMed  Google Scholar 

  • Warner DA, Shine R (2007) Fitness of juvenile lizards depends on seasonal timing of hatching, not offspring body size. Oecologia 154:65–73

    Article  PubMed  Google Scholar 

  • Warner DA, Shine R (2008a) The adaptive significance of temperature-dependent sex determination in a reptile. Nature 451:566–568

    Article  CAS  PubMed  Google Scholar 

  • Warner DA, Shine R (2008b) Maternal nest-site choice in a lizard with temperature-dependent sex determination. Anim Behav 75:861–870

    Article  Google Scholar 

  • Warner DA, Lovern MB, Shine R (2007) Maternal nutrition affects reproductive output and sex allocation in a lizard with environmental sex determination. Proc R Soc Lond B 274:883–890

    Article  CAS  Google Scholar 

  • Warner DA, Uller T, Shine R (2009) Fitness effects of the timing of hatching may drive the evolution of temperature-dependent sex determination in short-lived lizards. Evol Ecol 23:281–294

    Article  Google Scholar 

  • Wilson AJ, et al. (2005) Selection on mothers and offspring: whose phenotype is it and does it matter? Evolution 59:451–463

    PubMed  Google Scholar 

  • Wilson AJ, Pemberton JM, Pilkington JG, Clutton-Brock TH, Kruuk LEB (2009) Trading offspring size for number in a variable environment: selection on reproductive investment in female Soay sheep. J Anim Ecol 78:354–364

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for constructive comments by Barry Sinervo and one anonymous reviewer. Ernie Snaith, Gerry Swan, Chris Coombes and Glen Murray assisted in the field. T. U. was supported by the Wenner-Gren Foundations and the Australian Research Council. M. O. was supported by the Australian Research Council. This study was approved by and conducted in compliance with Wollongong University animal ethics protocols; AE 04/03, AE 04, AE 05, AE 06. A scientific licence was also issued under the National Parks and Wildlife Act 1974 by the National Parks and Wildlife Service, NSW, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Uller.

Additional information

Communicated by Mark Chappell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uller, T., Olsson, M. Offspring size and timing of hatching determine survival and reproductive output in a lizard. Oecologia 162, 663–671 (2010). https://doi.org/10.1007/s00442-009-1503-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1503-x

Keywords

Navigation