Skip to main content
Log in

Distribution of vasotocin- and mesotocin-like immunoreactivities in the brain of Typhlonectes compressicauda (Amphibia, Gymnophiona): further assessment of primitive and derived traits of amphibian neuropeptidergic systems

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract.

To further assess primitive and derived conditions, we have studied the vasotocinergic (AVT) and mesotocinergic (MST) systems by immmunohistochemistry in the brain of Typhlonectes compressicauda. This species belongs to a separate order of amphibians which differs in several morphological and behavioral aspects from anurans and urodeles which have been studied previously. Nevertheless, the vasotocinergic and mesotocinergic systems of T. compressicauda are largely comparable to those of other amphibians. Apart from a well-developed hypothalamo-hypophysial system, extrahypothalamic AVT-and MST-immunoreactive groups of cells and extensive networks of fibers were found. A major difference, however, is that neuropeptidergic cells in the caudal hypothalamus and the midbrain tegmentum of T. compressicauda contain MST, whereas those in corresponding locations contain AVT in anurans and urodeles. This suggests that certain neuropeptidergic cell groups in the gymnophionan brain have switched from AVT to MST gene expression, and, thereby, offers a new view on the functional significance of these neuropeptidergic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 6 June 1996 / Accepted: 9 September 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, A., Smeets, W. Distribution of vasotocin- and mesotocin-like immunoreactivities in the brain of Typhlonectes compressicauda (Amphibia, Gymnophiona): further assessment of primitive and derived traits of amphibian neuropeptidergic systems. Cell Tissue Res 287, 305–314 (1997). https://doi.org/10.1007/s004410050755

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004410050755

Navigation