Skip to main content

Advertisement

Log in

Therapeutic strategies for identifying small molecules against prion diseases

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Prion diseases are fatal neurodegenerative disorders, for which there are no effective therapeutic and diagnostic agents. The main pathological hallmark has been identified as conformational changes of the cellular isoform prion protein (PrPC) to a misfolded isoform of the prion protein (PrPSc). Targeting PrPC and its conversion to PrPSc is still the central dogma in prion drug discovery, particularly in in silico and in vitro screening endeavors, leading to the identification of many small molecules with therapeutic potential. Nonetheless, multiple pathological targets are critically involved in the intricate pathogenesis of prion diseases. In this context, multi-target-directed ligands (MTDLs) emerge as valuable therapeutic approach for their potential to effectively counteract the complex etiopathogenesis by simultaneously modulating multiple targets. In addition, diagnosis occurs late in the disease process, and consequently a successful therapeutic intervention cannot be provided. In this respect, small molecule theranostics, which combine imaging and therapeutic properties, showed tremendous potential to cure and diagnose in vivo prion diseases. Herein, we review the major advances in prion drug discovery, from anti-prion small molecules identified by means of in silico and in vitro screening approaches to two rational strategies, namely MTDLs and theranostics, that have led to the identification of novel compounds with an expanded anti-prion profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguzzi A, Calella AM (2009) Prions: protein aggregation and infectious diseases. Physiol Rev 89:1105–1152

    Article  CAS  PubMed  Google Scholar 

  • Aguzzi A, Lakkaraju AKK, Frontzek K (2018) Toward therapy of human prion diseases. Annu Rev Pharmacol Toxicol 58:331–351

    Article  CAS  PubMed  Google Scholar 

  • Ali T, Hannaoui S, Nemani S, Tahir W, Zemlyankina I, Cherry P, Shim SY, Sim V, Schaetzl HM, Gilch S (2021) Oral administration of repurposed drug targeting Cyp46a1 increases survival times of prion infected mice. Acta Neuropathol Commun 9:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayrolles-Torro A, Imberdis T, Torrent J, Toupet K, Baskakov IV, Poncet-Montange G, Grégoire C, Roquet-Baneres F, Lehmann S, Rognan D et al (2011) Oligomeric-induced activity by thienyl pyrimidine compounds traps prion infectivity. J Neurosci 31:14882–14892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreca ML, Iraci N, Biggi S, Cecchetti V, Biasini E (2018) Pharmacological agents targeting the cellular prion protein. Pathogens 7:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Bendheim PE, Brown HR, Rudelli RD, Scala LJ, Goller NL, Wen GY, Kascsak RJ, Cashman NR, Bolton DC (1992) Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 42:149–156

    Article  CAS  PubMed  Google Scholar 

  • Benito-León J (2004) Combined quinacrine and chlorpromazine therapy in fatal familial insomnia. Clin Neuropharmacol 27:201–203

    Article  PubMed  Google Scholar 

  • Bolognesi ML, Ai Tran HN, Staderini M, Monaco A, López-Cobeñas A, Bongarzone S, Biarnés X, López-Alvarado P, Cabezas N, Caramelli M et al (2010) Discovery of a class of diketopiperazines as antiprion compounds. ChemMedChem 5:1324–1334

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi ML, Bongarzone S, Aulic S, Ai Tran HN, Prati F, Carloni P, Legname G (2015) Rational approach to an antiprion compound with a multiple mechanism of action. Future Med Chem 7:2113–2120

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi ML, Gandini A, Prati F, Uliassi E (2016) From companion diagnostics to theranostics: a new avenue for Alzheimer’s disease? J Med Chem 59:7759–7770

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi ML, Minarini A, Tumiatti V, Melchiorre C (2006) Lipoic acid, a lead structure for multi-target-directed drugs for neurodegeneration. Mini Rev Med Chem 6:1269–1274

    Article  CAS  PubMed  Google Scholar 

  • Bongarzone S, Staderini M, Bolognesi ML (2014) Multitarget ligands and theranostics: sharpening the medicinal chemistry sword against prion diseases. Future Med Chem 6:1017–1029

    Article  CAS  PubMed  Google Scholar 

  • Bongarzone S, Tran HN, Cavalli A, Roberti M, Carloni P, Legname G, Bolognesi ML (2010) Parallel synthesis, evaluation, and preliminary structure-activity relationship of 2,5-diamino-1,4-benzoquinones as a novel class of bivalent anti-prion compound. J Med Chem 53:8197–8201

    Article  CAS  PubMed  Google Scholar 

  • Bongarzone S, Tran HN, Cavalli A, Roberti M, Rosini M, Carloni P, Legname G, Bolognesi ML (2011) Hybrid lipoic acid derivatives to attack prion disease on multiple fronts. ChemMedChem 6:601–605

    Article  CAS  PubMed  Google Scholar 

  • Booth SA (2017) What’s next for genomics and prion diseases? Future Sci OA 3:FSO188

  • Cao K, Farahi M, Dakanali M, Chang WM, Sigurdson CJ, Theodorakis EA, Yang J (2012) Aminonaphthalene 2-cyanoacrylate (anca) probes fluorescently discriminate between amyloid-β and prion plaques in brain. J Am Chem Soc 134:17338–17341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao KJ, Elbel KM, Cifelli JL, Cirera J, Sigurdson CJ, Paesani F, Theodorakis EA, Yang J (2018) Solvation-guided design of fluorescent probes for discrimination of amyloids. Sci Rep 8:6950

    Article  PubMed  PubMed Central  Google Scholar 

  • Castle AR, Gill AC (2017) Physiological functions of the cellular prion protein. Front Mol Biosci 4:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C (2008) Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 51:347–372

    Article  CAS  PubMed  Google Scholar 

  • Colini Baldeschi A, Vanni S, Zattoni M, Legname G (2020) Novel regulators of PrPC expression as potential therapeutic targets in prion diseases. Expert Opin Ther Targets 24:759–776

    Article  CAS  PubMed  Google Scholar 

  • Connor A, Wang H, Appleby BS, Rhoads DD (2019) Clinical laboratory tests used to aid in diagnosis of human prion disease. J Clin Microbiol 57:e00769-e819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drisko JA (2002) The use of antioxidants in transmissible spongiform encephalopathies: a case report. J Am Coll Nutr 2:22–25

    Article  Google Scholar 

  • Du Z, Goncharoff DK, Cheng X, Li L (2017) Analysis of [swi. Mol Microbiol 104:105–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Z, Valtierra S, Cardona LR, Dunne SF, Luan CH, Li L (2019) Identifying anti-prion chemical compounds using a newly established yeast high-throughput screening system. Cell Chem Biol 26:1664–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forloni G, Iussich S, Awan T, Colombo L, Angeretti N, Girola L, Bertani I, Poli G, Caramelli M, Grazia Bruzzone M et al (2002) Tetracyclines affect prion infectivity. Proc Natl Acad Sci U S A 99:10849–10854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forloni G, Roiter I, Tagliavini F (2019) Clinical trials of prion disease therapeutics. Curr Opin Pharmacol 44:53–60

    Article  CAS  PubMed  Google Scholar 

  • Galdeano C, Viayna E, Sola I, Formosa X, Camps P, Badia A, Clos MV, Relat J, Ratia M, Bartolini M et al (2012) Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimer’s and prion diseases. J Med Chem 55:661–669

    Article  CAS  PubMed  Google Scholar 

  • Gandini A, Bolognesi ML (2017) Therapeutic approaches to prion diseases. Prog Mol Biol Transl Sci 150:433–453

    Article  CAS  PubMed  Google Scholar 

  • Geissen M, Leidel F, Eiden M, Hirschberger T, Fast C, Bertsch U, Tavan P, Giese A, Kretzschmar H, Schatzl HM et al (2011) From high-throughput cell culture screening to mouse model: identification of new inhibitor classes against prion disease. ChemMedChem 6:1928–1937

    Article  CAS  PubMed  Google Scholar 

  • Ghaemmaghami S, Russo M, Renslo AR (2014) Successes and challenges in phenotype-based lead discovery for prion diseases. J Med Chem 57:6919–6929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giachin G, Mai PT, Tran TH, Salzano G, Benetti F, Migliorati V, Arcovito A, Della Longa S, Mancini G, D’Angelo P et al (2015) The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion. Sci Rep 5:15253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glynn C, Sawaya MR, Ge P, Gallagher-Jones M, Short CW, Bowman R, Apostol M, Zhou ZH, Eisenberg DS, Rodriguez JA (2020) Cryo-em structure of a human prion fibril with a hydrophobic, protease-resistant core. Nat Struct Mol Biol 27:417–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haïk S, Marcon G, Mallet A, Tettamanti M, Welaratne A, Giaccone G, Azimi S, Pietrini V, Fabreguettes JR, Imperiale D et al (2014) Doxycycline in creutzfeldt-jakob disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 13:150–158

    Article  PubMed  Google Scholar 

  • Hyeon JW, Choi J, Kim SY, Govindaraj RG, Jam Hwang K, Lee YS, An SS, Lee MK, Joung JY, No KT et al (2015) Discovery of novel anti-prion compounds using in silico and in vitro approaches. Sci Rep 5:14944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imberdis T, Ayrolles-Torro A, Duarte Rodrigues A, Torrent J, Alvarez-Martinez MT, Kovacs GG, Verdier JM, Robitzer M, Perrier V (2016a) A fluorescent oligothiophene-bis-triazine ligand interacts with PRP fibrils and detects sds-resistant oligomers in human prion diseases. Mol Neurodegener 11:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Imberdis T, Heeres JT, Yueh H, Fang C, Zhen J, Rich CB, Glicksman M, Beeler AB, Harris DA (2016b) Identification of anti-prion compounds using a novel cellular assay. J Biol Chem 291:26164–26176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishibashi D, Nakagaki T, Ishikawa T, Atarashi R, Watanabe K, Cruz FA, Hamada T, Nishida N (2016) Structure-based drug discovery for prion disease using a novel binding simulation. EBioMedicine 9:238–249

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishikawa T, Ishikura T, Kuwata K (2009) Theoretical study of the prion protein based on the fragment molecular orbital method. J Comput Chem 30:2594–2601

    Article  CAS  PubMed  Google Scholar 

  • Jameson LP, Smith NW, Dzyuba SV (2012) Dye-binding assays for evaluation of the effects of small molecule inhibitors on amyloid (aβ) self-assembly. ACS Chem Neurosci 3:807–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karapetyan YE, Sferrazza GF, Zhou M, Ottenberg G, Spicer T, Chase P, Fallahi M, Hodder P, Weissmann C, Lasmézas CI (2013) Unique drug screening approach for prion diseases identifies tacrolimus and astemizole as antiprion agents. Proc Natl Acad Sci U S A 110:7044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura T, Sako T, Siqin, Hosokawa-Muto J, Cui YL, Wada Y, Kataoka Y, Doi H, Sakaguchi S, Suzuki M et al (2013) Synthesis of an (11) c-labeled antiprion gn8 derivative and evaluation of its brain uptake by positron emission tomography. ChemMedChem 8:1035–1039

  • Klingenstein R, Löber S, Kujala P, Godsave S, Leliveld SR, Gmeiner P, Peters PJ, Korth C (2006) Tricyclic antidepressants, quinacrine and a novel, synthetic chimera thereof clear prions by destabilizing detergent-resistant membrane compartments. J Neurochem 98:748–759

    Article  CAS  PubMed  Google Scholar 

  • Korth C, May BC, Cohen FE, Prusiner SB (2001) Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc Natl Acad Sci U S A 98:9836–9841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kübler E, Oesch B, Raeber AJ (2003) Diagnosis of prion diseases. Br Med Bull 66:267–279

  • Kuwata K, Li H, Yamada H, Legname G, Prusiner SB, Akasaka K, James TL (2002) Locally disordered conformer of the hamster prion protein: a crucial intermediate to PRPSC? Biochemistry 41:12277–12283

    Article  CAS  PubMed  Google Scholar 

  • Kuwata K, Nishida N, Matsumoto T, Kamatari YO, Hosokawa-Muto J, Kodama K, Nakamura HK, Kimura K, Kawasaki M, Takakura Y et al (2007) Hot spots in prion protein for pathogenic conversion. Proc Natl Acad Sci U S A 104:11921–11926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladner-Keay CL, Ross L, Perez-Pineiro R, Zhang L, Bjorndahl TC, Cashman N, Wishart DS (2018) A simple in vitro assay for assessing the efficacy, mechanisms and kinetics of anti-prion fibril compounds. Prion 12:280–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legname G (2017) Elucidating the function of the prion protein. PLoS Pathog 13:e1006458

  • Li B, Chen M, Zhu C (2021) Neuroinflammation in prion disease. Int J Mol Sci 22:2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Gever J, Rao S, Widjaja K, Prusiner SB, Silber BM (2013a) Discovery and preliminary SAR of arylpiperazines as novel, brainpenetrant antiprion compounds. ACS Med Chem Lett 4:397–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Rao S, Gever JR, Widjaja K, Prusiner SB, Silber BM (2013b) Optimization of arylamides as novel, potent and brain-penetrant antiprion lead compounds. ACS Med Chem Lett 4:647–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Li X (2020) A review on applications of computational methods in drug screening and design. Molecules 25:1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrone A, Re N, Storchi L (2016) The effects of Ca2+ concentration and e200k mutation on the aggregation propensity of prpc: A computational study. PLoS One 11:e0168039

  • Marzo L, Marijanovic Z, Browman D, Chamoun Z, Caputo A, Zurzolo C (2013) 4-Hydroxytamoxifen leads to PRPSC clearance by conveying both PRPC and PRPSC to lysosomes independently of autophagy. J Cell Sci 126:1345–1354

    CAS  PubMed  Google Scholar 

  • Mizrahi M, Friedman-Levi Y, Larush L, Frid K, Binyamin O, Dori D, Fainstein N, Ovadia H, Ben-Hur T, Magdassi S et al (2014) Pomegranate seed oil nanoemulsions for the prevention and treatment of neurodegenerative diseases: the case of genetic cjd. Nanomedicine 10:1353–1363

    Article  CAS  PubMed  Google Scholar 

  • Moda F, Bolognesi ML, Legname G (2019) Novel screening approaches for human prion diseases drug discovery. Expert Opin Drug Discov 14:983–993

    Article  PubMed  Google Scholar 

  • Mustazza C, Sbriccoli M, Minosi P, Raggi C (2020) Small molecules with anti-prion activity. Curr Med Chem 27:5446–5479

    Article  CAS  PubMed  Google Scholar 

  • Nguyen PH, Hammoud H, Halliez S, Pang Y, Evrard J, Schmitt M, Oumata N, Bourguignon JJ, Sanyal S, Beringue V et al (2014) Structure-activity relationship study around guanabenz identifies two derivatives retaining antiprion activity but having lost α2-adrenergic receptor agonistic activity. ACS Chem Neurosci 5:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Pamplona R, Naudi A, Gavin R, Pastrana MA, Sajnani G, Ilieva EV, Del Rio JA, Portero-Otin M, Ferrer I, Requena JR (2008) Increased oxidation, glycoxidation, and lipoxidation of brain proteins in prion disease. Free Radic Biol Med 45:1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90:10962–10966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pera M, Martínez-Otero A, Colombo L, Salmona M, Ruiz-Molina D, Badia A, Clos MV (2009) Acetylcholinesterase as an amyloid enhancing factor in prp82-146 aggregation process. Mol Cell Neurosci 40:217–224

    Article  CAS  PubMed  Google Scholar 

  • Pera M, Román S, Ratia M, Camps P, Muñoz-Torrero D, Colombo L, Manzoni C, Salmona M, Badia A, Clos MV (2006) Acetylcholinesterase triggers the aggregation of PRP 106–126. Biochem Biophys Res Commun 346:89–94

    Article  CAS  PubMed  Google Scholar 

  • Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V (2013) 8-hydroxyquinolines: a review of their metal chelating properties and medicinal applications. Drug Des Devel Ther 7:1157–1178

    Article  PubMed  PubMed Central  Google Scholar 

  • Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144

    Article  CAS  PubMed  Google Scholar 

  • Prusiner SB (2001) Shattuck lecture–neurodegenerative diseases and prions. N Engl J Med 344:1516–1526

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Singh A, Das D, Mohan ML (2010) Redox control of prion and disease pathogenesis. Antioxid Redox Signal 12:1271–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto C, Pritzkow S (2018) Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci 21:1332–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spagnolli G, Massignan T, Astolfi A, Biggi S, Rigoli M, Brunelli P, Libergoli M, Ianeselli A, Orioli S, Boldrini A et al (2021) Pharmacological inactivation of the prion protein by targeting a folding intermediate. Commun Biol 4:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staderini M, Aulic S, Bartolini M, Tran HN, Gonzalez-Ruiz V, Perez DI, Cabezas N, Martinez A, Martin MA, Andrisano V et al (2013a) A fluorescent styrylquinoline with combined therapeutic and diagnostic activities against Alzheimer’s and prion diseases. ACS Med Chem Lett 4:225–229

    Article  CAS  PubMed  Google Scholar 

  • Staderini M, Legname G, Bolognesi ML, Menéndez JC (2013b) Modulation of prion by small molecules: from monovalent to bivalent and multivalent ligands. Curr Top Med Chem 13:2491–2503

    Article  CAS  PubMed  Google Scholar 

  • Staderini M, Martín MA, Bolognesi ML, Menéndez JC (2015) Imaging of β-amyloid plaques by near infrared fluorescent tracers: a new frontier for chemical neuroscience. Chem Soc Rev 44:1807–1819

    Article  CAS  PubMed  Google Scholar 

  • Storchi L, Paciotti R, Re N, Marrone A (2015) Investigation of the molecular similarity in closely related protein systems: the PRP case study. Proteins 83:1751–1765

    Article  CAS  PubMed  Google Scholar 

  • Toni M, Massimino ML, De Mario A, Angiulli E, Spisni E (2017) Metal dyshomeostasis and their pathological role in prion and prion-like diseases: the basis for a nutritional approach. Front Neurosci 11:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Tribouillard-Tanvier D, Béringue V, Desban N, Gug F, Bach S, Voisset C, Galons H, Laude H, Vilette D, Blondel M (2008) Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions. PLoS One 3:e1981

  • Törnqvist E, Annas A, Granath B, Jalkesten E, Cotgreave I, Öberg M (2014) Strategic focus on 3r principles reveals major reductions in the use of animals in pharmaceutical toxicity testing. PLoS One 9:e101638

  • Uttley L, Carroll C, Wong R, Hilton DA, Stevenson M (2020) Creutzfeldt-jakob disease: a systematic review of global incidence, prevalence, infectivity, and incubation. Lancet Infect Dis 20:e2–e10

    Article  PubMed  Google Scholar 

  • Van Everbroeck B, Dobbeleir I, De Waele M, De Leenheir E, Lübke U, Martin JJ, Cras P (2004) Extracellular protein deposition correlates with glial activation and oxidative stress in Creutzfeldt-Jakob and Alzheimer’s disease. Acta Neuropathol 108:194–200

    Article  PubMed  Google Scholar 

  • Vandenberghe R, Adamczuk K, Dupont P, Laere KV, Chételat G (2013) Amyloid pet in clinical practice: Its place in the multidimensional space of Alzheimer’s disease. Neuroimage Clin 2:497–511

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang LH, Bucelli RC, Patrick E, Rajderkar D, Alvarez Iii E, Lim MM, Debruin G, Sharma V, Dahiya S, Schmidt RE et al (2013) Role of magnetic resonance imaging, cerebrospinal fluid, and electroencephalogram in diagnosis of sporadic Creutzfeldt-Jakob disease. J Neurol 260:498–506

    Article  PubMed  Google Scholar 

  • Wang LQ, Zhao K, Yuan HY, Wang Q, Guan Z, Tao J, Li XN, Sun Y, Yi CW, Chen J et al (2020) Cryo-em structure of an amyloid fibril formed by full-length human prion protein. Nat Struct Mol Biol 27:598–602

    Article  PubMed  Google Scholar 

  • Wang LQ, Zhao K, Yuan HY, Li XN, Dang HB, Ma Y, Wang Q, Wang C, Sun Y, Chen J et al (2021) Genetic prion disease-related mutation e196k displays a novel amyloid fibril structure revealed by cryo-em. Sci Adv 7:eabg9676

  • Watts JC, Bourkas MEC, Arshad H (2018) The function of the cellular prion protein in health and disease. Acta Neuropathol 135:159–178

    Article  CAS  PubMed  Google Scholar 

  • Westergard L, Christensen HM, Harris DA (2007) The cellular prion protein (prp(c)): its physiological function and role in disease. Biochim Biophys Acta 1772:629–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woerman AL (2021) Strain diversity in neurodegenerative disease: an argument for a personalized medicine approach to diagnosis and treatment. Acta Neuropathol 142:1–3

    Article  PubMed  Google Scholar 

  • Wulf MA, Senatore A, Aguzzi A (2017) The biological function of the cellular prion protein: an update. BMC Biol 15:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi K, Kamatari YO, Ono F, Shibata H, Fuse T, Elhelaly AE, Fukuoka M, Kimura T, Hosokawa-Muto J, Ishikawa T et al (2019) A designer molecular chaperone against transmissible spongiform encephalopathy slows disease progression in mice and macaques. Nat Biomed Eng 3:206–219

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Kuwata K (2009) Regulating the conformation of prion protein through ligand binding. J Phys Chem B 113:12853–12856

    Article  CAS  PubMed  Google Scholar 

  • Yamashita S, Honda R, Fukuoka M, Kimura T, Hosokawa-Muto J, Kuwata K (2020) Discovery of a multipotent chaperone, 1-(2,6-difluorobenzylamino)-3-(1,2,3,4-tetrahydrocarbazol-9-yl)-propan-2-ol with the inhibitory effects on the proliferation of prion, cancer as well as influenza virus. Prion 14:42–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun SW, Gerlach M, Riederer P, Klein MA (2006) Oxidative stress in the brain at early preclinical stages of mouse scrapie. Exp Neurol 201:90–98

    Article  CAS  PubMed  Google Scholar 

  • Zaccagnini L, Brogi S, Brindisi M, Gemma S, Chemi G, Legname G, Campiani G, Butini S (2017) Identification of novel fluorescent probes preventing prp. Eur J Med Chem 127:859–873

    Article  CAS  PubMed  Google Scholar 

  • Zaccagnini L, Rossetti G, Tran TH, Salzano G, Gandini A, Colini Baldeschi A, Bolognesi ML, Carloni P, Legname G (2020) In silico/in vitro screening and hit evaluation identified new phenothiazine anti-prion derivatives. Eur J Med Chem 196:112295

  • Zahn R, Liu A, Lührs T, Riek R, von Schroetter C, López García F, Billeter M, Calzolai L, Wider G, Wüthrich K (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A 97:145–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou DH, Wang J, Xiao K, Wu YZ, Maimaitiming A, Hu C, Gao LP, Chen J, Gao C, Chen C et al (2020) Stilbene compounds inhibit the replications of various strains of prions in the levels of cell culture, PMCA, and RT-QuIC possibly via molecular binding. ACS Chem Neurosci 11:2117–2128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge SISSA and the University of Bologna for their support.

Funding

This manuscript was supported by intramural SISSA funding to GL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Laura Bolognesi or Giuseppe Legname.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uliassi, E., Nikolic, L., Bolognesi, M.L. et al. Therapeutic strategies for identifying small molecules against prion diseases. Cell Tissue Res 392, 337–347 (2023). https://doi.org/10.1007/s00441-021-03573-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03573-x

Keywords

Navigation