Skip to main content

Advertisement

Log in

The function of the cellular prion protein in health and disease

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The essential role of the cellular prion protein (PrPC) in prion disorders such as Creutzfeldt–Jakob disease is well documented. Moreover, evidence is accumulating that PrPC may act as a receptor for protein aggregates and transduce neurotoxic signals in more common neurodegenerative disorders, such as Alzheimer’s disease. Although the pathological roles of PrPC have been thoroughly characterized, a general consensus on its physiological function within the brain has not yet been established. Knockout studies in various organisms, ranging from zebrafish to mice, have implicated PrPC in a diverse range of nervous system-related activities that include a key role in the maintenance of peripheral nerve myelination as well as a general ability to protect against neurotoxic stimuli. Thus, the function of PrPC may be multifaceted, with different cell types taking advantage of unique aspects of its biology. Deciphering the cellular function(s) of PrPC and the consequences of its absence is not simply an academic curiosity, since lowering PrPC levels in the brain is predicted to be a powerful therapeutic strategy for the treatment of prion disease. In this review, we outline the various approaches that have been employed in an effort to uncover the physiological and pathological functions of PrPC. While these studies have revealed important clues about the biology of the prion protein, the precise reason for PrPC’s existence remains enigmatic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aguzzi A, Baumann F, Bremer J (2008) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–477. https://doi.org/10.1146/annurev.neuro.31.060407.125620

    Article  CAS  PubMed  Google Scholar 

  2. Aguzzi A, Polymenidou M (2004) Mammalian prion biology: one century of evolving concepts. Cell 116:313–327

    Article  CAS  PubMed  Google Scholar 

  3. Altmeppen HC, Prox J, Krasemann S, Puig B, Kruszewski K, Dohler F, Bernreuther C, Hoxha A, Linsenmeier L, Sikorska B, Liberski PP, Bartsch U, Saftig P, Glatzel M (2015) The sheddase ADAM10 is a potent modulator of prion disease. eLife. https://doi.org/10.7554/eLife.04260

    PubMed  PubMed Central  Google Scholar 

  4. Altmeppen HC, Prox J, Puig B, Dohler F, Falker C, Krasemann S, Glatzel M (2013) Roles of endoproteolytic alpha-cleavage and shedding of the prion protein in neurodegeneration. FEBS J 280:4338–4347. https://doi.org/10.1111/febs.12196

    Article  CAS  PubMed  Google Scholar 

  5. Anderson L, Rossi D, Linehan J, Brandner S, Weissmann C (2004) Transgene-driven expression of the Doppel protein in Purkinje cells causes Purkinje cell degeneration and motor impairment. Proc Natl Acad Sci USA 101:3644–3649. https://doi.org/10.1073/pnas.0308681101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aulic S, Masperone L, Narkiewicz J, Isopi E, Bistaffa E, Ambrosetti E, Pastore B, De Cecco E, Scaini D, Zago P, Moda F, Tagliavini F, Legname G (2017) alpha-Synuclein amyloids hijack prion protein to gain cell entry, facilitate cell-to-cell spreading and block prion replication. Sci Rep 7:10050. https://doi.org/10.1038/s41598-017-10236-x

    Article  PubMed  PubMed Central  Google Scholar 

  7. Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, Biasini E, Tapella L, Colombo L, Manzoni C, Borsello T, Chiesa R, Gobbi M, Salmona M, Forloni G (2010) Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci USA 107:2295–2300. https://doi.org/10.1073/pnas.0911829107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barry AE, Klyubin I, Mc Donald JM, Mably AJ, Farrell MA, Scott M, Walsh DM, Rowan MJ (2011) Alzheimer’s disease brain-derived amyloid-beta-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J Neurosci 31:7259–7263. https://doi.org/10.1523/JNEUROSCI.6500-10.2011

    Article  CAS  PubMed  Google Scholar 

  9. Basler K, Oesch B, Scott M, Westaway D, Walchli M, Groth DF, McKinley MP, Prusiner SB, Weissmann C (1986) Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46:417–428

    Article  CAS  PubMed  Google Scholar 

  10. Baumann F, Tolnay M, Brabeck C, Pahnke J, Kloz U, Niemann HH, Heikenwalder M, Rulicke T, Burkle A, Aguzzi A (2007) Lethal recessive myelin toxicity of prion protein lacking its central domain. EMBO J 26:538–547. https://doi.org/10.1038/sj.emboj.7601510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Behrens A, Genoud N, Naumann H, Rulicke T, Janett F, Heppner FL, Ledermann B, Aguzzi A (2002) Absence of the prion protein homologue Doppel causes male sterility. EMBO J 21:3652–3658. https://doi.org/10.1093/emboj/cdf386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beland M, Motard J, Barbarin A, Roucou X (2012) PrP(C) homodimerization stimulates the production of PrPC cleaved fragments PrPN1 and PrPC1. J Neurosci 32:13255–13263. https://doi.org/10.1523/JNEUROSCI.2236-12.2012

    Article  CAS  PubMed  Google Scholar 

  13. Bendheim PE, Brown HR, Rudelli RD, Scala LJ, Goller NL, Wen GY, Kascsak RJ, Cashman NR, Bolton DC (1992) Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 42:149–156

    Article  CAS  PubMed  Google Scholar 

  14. Benestad SL, Austbo L, Tranulis MA, Espenes A, Olsaker I (2012) Healthy goats naturally devoid of prion protein. Vet Res 43:87. https://doi.org/10.1186/1297-9716-43-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beraldo FH, Arantes CP, Santos TG, Machado CF, Roffe M, Hajj GN, Lee KS, Magalhaes AC, Caetano FA, Mancini GL, Lopes MH, Americo TA, Magdesian MH, Ferguson SS, Linden R, Prado MA, Martins VR (2011) Metabotropic glutamate receptors transduce signals for neurite outgrowth after binding of the prion protein to laminin gamma1 chain. FASEB J 25:265–279. https://doi.org/10.1096/fj.10-161653

    Article  CAS  PubMed  Google Scholar 

  16. Berry DB, Lu D, Geva M, Watts JC, Bhardwaj S, Oehler A, Renslo AR, DeArmond SJ, Prusiner SB, Giles K (2013) Drug resistance confounding prion therapeutics. Proc Natl Acad Sci USA 110:E4160–E4169. https://doi.org/10.1073/pnas.1317164110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bounhar Y, Zhang Y, Goodyer CG, LeBlanc A (2001) Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem 276:39145–39149. https://doi.org/10.1074/jbc.C100443200

    Article  CAS  PubMed  Google Scholar 

  18. Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, Marino S, Weissmann C, Aguzzi A (1996) Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379:339–343. https://doi.org/10.1038/379339a0

    Article  CAS  PubMed  Google Scholar 

  19. Bravard A, Auvre F, Fantini D, Bernardino-Sgherri J, Sissoeff L, Daynac M, Xu Z, Etienne O, Dehen C, Comoy E, Boussin FD, Tell G, Deslys JP, Radicella JP (2015) The prion protein is critical for DNA repair and cell survival after genotoxic stress. Nucleic Acids Res 43:904–916. https://doi.org/10.1093/nar/gku1342

    Article  CAS  PubMed  Google Scholar 

  20. Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, Steele AD, Toyka KV, Nave KA, Weis J, Aguzzi A (2010) Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 13:U310–U319. https://doi.org/10.1038/nn.2483

    Article  CAS  Google Scholar 

  21. Brettschneider J, Del Tredici K, Lee VM, Trojanowski JQ (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16:109–120. https://doi.org/10.1038/nrn3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brown DR, Besinger A, Herms JW, Kretzschmar HA (1998) Microglial expression of the prion protein. Neuroreport 9:1425–1429

    Article  CAS  PubMed  Google Scholar 

  23. Brown DR, Hafiz F, Glasssmith LL, Wong BS, Jones IM, Clive C, Haswell SJ (2000) Consequences of manganese replacement of copper for prion protein function and proteinase resistance. EMBO J 19:1180–1186. https://doi.org/10.1093/emboj/19.6.1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brown DR, Herms J, Kretzschmar HA (1994) Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 5:2057–2060

    Article  CAS  PubMed  Google Scholar 

  25. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H (1997) The cellular prion protein binds copper in vivo. Nature 390:684–687. https://doi.org/10.1038/37783

    Article  CAS  PubMed  Google Scholar 

  26. Brown DR, Wong BS, Hafiz F, Clive C, Haswell SJ, Jones IM (1999) Normal prion protein has an activity like that of superoxide dismutase. Biochem J 344:1–5. https://doi.org/10.1042/0264-6021:3440001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Budka H (2003) Neuropathology of prion diseases. Br Med Bull 66:121–130

    Article  CAS  PubMed  Google Scholar 

  28. Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73:1339–1347

    Article  CAS  PubMed  Google Scholar 

  29. Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356:577–582. https://doi.org/10.1038/356577a0

    Article  CAS  PubMed  Google Scholar 

  30. Bueler H, Raeber A, Sailer A, Fischer M, Aguzzi A, Weissmann C (1994) High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol Med 1:19–30

    CAS  PubMed  Google Scholar 

  31. Butler DA, Scott MR, Bockman JM, Borchelt DR, Taraboulos A, Hsiao KK, Kingsbury DT, Prusiner SB (1988) Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. J Virol 62:1558–1564

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Calella AM, Farinelli M, Nuvolone M, Mirante O, Moos R, Falsig J, Mansuy IM, Aguzzi A (2010) Prion protein and Abeta-related synaptic toxicity impairment. EMBO Mol Med 2:306–314. https://doi.org/10.1002/emmm.201000082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Calzolai L, Lysek DA, Perez DR, Guntert P, Wuthrich K (2005) Prion protein NMR structures of chickens, turtles, and frogs. Proc Natl Acad Sci USA 102:651–655. https://doi.org/10.1073/pnas.0408939102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Calzolai L, Zahn R (2003) Influence of pH on NMR structure and stability of the human prion protein globular domain. J Biol Chem 278:35592–35596. https://doi.org/10.1074/jbc.M303005200

    Article  CAS  PubMed  Google Scholar 

  35. Carulla P, Llorens F, Matamoros-Angles A, Aguilar-Calvo P, Espinosa JC, Gavin R, Ferrer I, Legname G, Torres JM, del Rio JA (2015) Involvement of PrP(C) in kainate-induced excitotoxicity in several mouse strains. Sci Rep 5:11971. https://doi.org/10.1038/srep11971

    Article  PubMed  PubMed Central  Google Scholar 

  36. Castle AR, Gill AC (2017) Physiological functions of the cellular prion protein. Front Mol Biosci 4:19. https://doi.org/10.3389/fmolb.2017.00019

    Article  PubMed  PubMed Central  Google Scholar 

  37. Caughey B, Brown K, Raymond GJ, Katzenstein GE, Thresher W (1994) Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and congo red [corrected]. J Virol 68:2135–2141

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen S, Yadav SP, Surewicz WK (2010) Interaction between human prion protein and amyloid-beta (Abeta) oligomers: role of N-terminal residues. J Biol Chem 285:26377–26383. https://doi.org/10.1074/jbc.M110.145516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chiarini LB, Freitas AR, Zanata SM, Brentani RR, Martins VR, Linden R (2002) Cellular prion protein transduces neuroprotective signals. EMBO J 21:3317–3326. https://doi.org/10.1093/emboj/cdf324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cisse M, Sanchez PE, Kim DH, Ho K, Yu GQ, Mucke L (2011) Ablation of cellular prion protein does not ameliorate abnormal neural network activity or cognitive dysfunction in the J20 line of human amyloid precursor protein transgenic mice. J Neurosci 31:10427–10431. https://doi.org/10.1523/JNEUROSCI.1459-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coitinho AS, Freitas AR, Lopes MH, Hajj GN, Roesler R, Walz R, Rossato JI, Cammarota M, Izquierdo I, Martins VR, Brentani RR (2006) The interaction between prion protein and laminin modulates memory consolidation. Eur J Neurosci 24:3255–3264. https://doi.org/10.1111/j.1460-9568.2006.05156.x

    Article  PubMed  Google Scholar 

  42. Colby DW, Prusiner SB (2011) Prions. Cold Spring Harb Perspect Biol 3:a006833. https://doi.org/10.1101/cshperspect.a006833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Colling SB, Collinge J, Jefferys JGR (1996) Hippocampal slices from prion protein null mice: disrupted Ca2+-activated K+ currents. Neurosci Lett 209:49–52. https://doi.org/10.1016/0304-3940(96)12596-9

    Article  CAS  PubMed  Google Scholar 

  44. Colling SB, Khana M, Collinge J, Jefferys JG (1997) Mossy fibre reorganization in the hippocampus of prion protein null mice. Brain Res 755:28–35

    Article  CAS  PubMed  Google Scholar 

  45. Collinge J, Whittington MA, Sidle KCL, Smith CJ, Palmer MS, Clarke AR, Jefferys JGR (1994) Prion protein is necessary for normal synaptic function. Nature 370:295–297. https://doi.org/10.1038/370295a0

    Article  CAS  PubMed  Google Scholar 

  46. Daude N, Wohlgemuth S, Brown R, Pitstick R, Gapeshina H, Yang J, Carlson GA, Westaway D (2012) Knockout of the prion protein (PrP)-like Sprn gene does not produce embryonic lethality in combination with PrP(C)-deficiency. Proc Natl Acad Sci USA 109:9035–9040. https://doi.org/10.1073/pnas.1202130109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Almeida CJ, Chiarini LB, da Silva JP, e Silva PM, Martins MA, Linden R (2005) The cellular prion protein modulates phagocytosis and inflammatory response. J Leukoc Biol 77:238–246. https://doi.org/10.1189/jlb.1103531

    Article  PubMed  CAS  Google Scholar 

  48. Diarra-Mehrpour M, Arrabal S, Jalil A, Pinson X, Gaudin C, Pietu G, Pitaval A, Ripoche H, Eloit M, Dormont D, Chouaib S (2004) Prion protein prevents human breast carcinoma cell line from tumor necrosis factor alpha-induced cell death. Cancer Res 64:719–727

    Article  CAS  PubMed  Google Scholar 

  49. Ehsani S, Huo H, Salehzadeh A, Pocanschi CL, Watts JC, Wille H, Westaway D, Rogaeva E, St George-Hyslop PH, Schmitt-Ulms G (2011) Family reunion—the ZIP/prion gene family. Prog Neurobiol 93:405–420. https://doi.org/10.1016/j.pneurobio.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  50. Fang C, Imberdis T, Garza MC, Wille H, Harris DA (2016) A neuronal culture system to detect prion synaptotoxicity. PLoS Pathog 12:e1005623. https://doi.org/10.1371/journal.ppat.1005623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Faris R, Moore RA, Ward A, Race B, Dorward DW, Hollister JR, Fischer ER, Priola SA (2017) Cellular prion protein is present in mitochondria of healthy mice. Sci Rep 7:41556. https://doi.org/10.1038/srep41556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ferreira DG, Temido-Ferreira M, Miranda HV, Batalha VL, Coelho JE, Szego EM, Marques-Morgado I, Vaz SH, Rhee JS, Schmitz M, Zerr I, Lopes LV, Outeiro TF (2017) alpha-synuclein interacts with PrPC to induce cognitive impairment through mGluR5 and NMDAR2B. Nat Neurosci. https://doi.org/10.1038/nn.4648

    Google Scholar 

  53. Flechsig E, Hegyi I, Leimeroth R, Zuniga A, Rossi D, Cozzio A, Schwarz P, Rulicke T, Gotz J, Aguzzi A, Weissmann C (2003) Expression of truncated PrP targeted to Purkinje cells of PrP knockout mice causes Purkinje cell death and ataxia. EMBO J 22:3095–3101. https://doi.org/10.1093/emboj/cdg285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fleisch VC, Leighton PL, Wang H, Pillay LM, Ritzel RG, Bhinder G, Roy B, Tierney KB, Ali DW, Waskiewicz AJ, Allison WT (2013) Targeted mutation of the gene encoding prion protein in zebrafish reveals a conserved role in neuron excitability. Neurobiol Dis 55:11–25. https://doi.org/10.1016/j.nbd.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  55. Fluharty BR, Biasini E, Stravalaci M, Sclip A, Diomede L, Balducci C, La Vitola P, Messa M, Colombo L, Forloni G, Borsello T, Gobbi M, Harris DA (2013) An N-terminal fragment of the prion protein binds to amyloid-beta oligomers and inhibits their neurotoxicity in vivo. J Biol Chem 288:7857–7866. https://doi.org/10.1074/jbc.M112.423954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ford MJ, Burton LJ, Morris RJ, Hall SM (2002) Selective expression of prion protein in peripheral tissues of the adult mouse. Neuroscience 113:177–192

    Article  CAS  PubMed  Google Scholar 

  57. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein fragment. Nature 362:543–546. https://doi.org/10.1038/362543a0

    Article  CAS  PubMed  Google Scholar 

  58. Freir DB, Nicoll AJ, Klyubin I, Panico S, Mc Donald JM, Risse E, Asante EA, Farrow MA, Sessions RB, Saibil HR, Clarke AR, Rowan MJ, Walsh DM, Collinge J (2011) Interaction between prion protein and toxic amyloid beta assemblies can be therapeutically targeted at multiple sites. Nat Commun 2:336. https://doi.org/10.1038/ncomms1341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gauczynski S, Peyrin JM, Haik S, Leucht C, Hundt C, Rieger R, Krasemann S, Deslys JP, Dormont D, Lasmezas CI, Weiss S (2001) The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J 20:5863–5875. https://doi.org/10.1093/Emboj/20.21.5863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Giles K, Berry DB, Condello C, Dugger BN, Li Z, Oehler A, Bhardwaj S, Elepano M, Guan S, Silber BM, Olson SH, Prusiner SB (2016) Optimization of aryl amides that extend survival in prion-infected mice. J Pharmacol Exp Ther 358:537–547. https://doi.org/10.1124/jpet.116.235556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gimbel DA, Nygaard HB, Coffey EE, Gunther EC, Lauren J, Gimbel ZA, Strittmatter SM (2010) Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci 30:6367–6374. https://doi.org/10.1523/JNEUROSCI.0395-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gossert AD, Bonjour S, Lysek DA, Fiorito F, Wuthrich K (2005) Prion protein NMR structures of elk and of mouse/elk hybrids. Proc Natl Acad Sci USA 102:646–650. https://doi.org/10.1073/pnas.0409008102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Graner E, Mercadante AF, Zanata SM, Forlenza OV, Cabral AL, Veiga SS, Juliano MA, Roesler R, Walz R, Minetti A, Izquierdo I, Martins VR, Brentani RR (2000) Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res 76:85–92

    Article  CAS  PubMed  Google Scholar 

  64. Greten-Harrison B, Polydoro M, Morimoto-Tomita M, Diao L, Williams AM, Nie EH, Makani S, Tian N, Castillo PE, Buchman VL, Chandra SS (2010) alphabetagamma-Synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proc Natl Acad Sci USA 107:19573–19578. https://doi.org/10.1073/pnas.1005005107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Guillot-Sestier MV, Sunyach C, Druon C, Scarzello S, Checler F (2009) The alpha-secretase-derived N-terminal product of cellular prion, N1, displays neuroprotective function in vitro and in vivo. J Biol Chem 284:35973–35986. https://doi.org/10.1074/jbc.M109.051086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guo JL, Lee VM (2014) Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 20:130–138. https://doi.org/10.1038/nm.3457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Haas LT, Salazar SV, Kostylev MA, Um JW, Kaufman AC, Strittmatter SM (2016) Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease. Brain 139:526–546. https://doi.org/10.1093/brain/awv356

    Article  PubMed  Google Scholar 

  68. Harmey JH, Doyle D, Brown V, Rogers MS (1995) The cellular isoform of the prion protein, PrPc, is associated with caveolae in mouse neuroblastoma (N2a) cells. Biochem Biophys Res Commun 210:753–759. https://doi.org/10.1006/bbrc.1995.1723

    Article  CAS  PubMed  Google Scholar 

  69. Harrison PM, Khachane A, Kumar M (2010) Genomic assessment of the evolution of the prion protein gene family in vertebrates. Genomics 95:268–277. https://doi.org/10.1016/j.ygeno.2010.02.008

    Article  CAS  PubMed  Google Scholar 

  70. Heber S, Herms J, Gajic V, Hainfellner J, Aguzzi A, Rulicke T, von Kretzschmar H, von Koch C, Sisodia S, Tremml P, Lipp HP, Wolfer DP, Muller U (2000) Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J Neurosci 20:7951–7963

    CAS  PubMed  Google Scholar 

  71. Hegde RS, Mastrianni JA, Scott MR, DeFea KA, Tremblay P, Torchia M, DeArmond SJ, Prusiner SB, Lingappa VR (1998) A transmembrane form of the prion protein in neurodegenerative disease. Science 279:827–834

    Article  CAS  PubMed  Google Scholar 

  72. Herrmann US, Schutz AK, Shirani H, Huang D, Saban D, Nuvolone M, Li B, Ballmer B, Aslund AK, Mason JJ, Rushing E, Budka H, Nystrom S, Hammarstrom P, Bockmann A, Caflisch A, Meier BH, Nilsson KP, Hornemann S, Aguzzi A (2015) Structure-based drug design identifies polythiophenes as antiprion compounds. Sci Transl Med 7:299ra123. https://doi.org/10.1126/scitranslmed.aab1923

    Article  PubMed  CAS  Google Scholar 

  73. Holmes BB, DeVos SL, Kfoury N, Li M, Jacks R, Yanamandra K, Ouidja MO, Brodsky FM, Marasa J, Bagchi DP, Kotzbauer PT, Miller TM, Papy-Garcia D, Diamond MI (2013) Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci USA 110:E3138–E3147. https://doi.org/10.1073/pnas.1301440110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hornemann S, Schorn C, Wuthrich K (2004) NMR structure of the bovine prion protein isolated from healthy calf brains. EMBO Rep 5:1159–1164. https://doi.org/10.1038/sj.embor.7400297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hornshaw MP, McDermott JR, Candy JM (1995) Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein. Biochem Biophys Res Commun 207:621–629. https://doi.org/10.1006/bbrc.1995.1233

    Article  CAS  PubMed  Google Scholar 

  76. Hu NW, Nicoll AJ, Zhang D, Mably AJ, O’Malley T, Purro SA, Terry C, Collinge J, Walsh DM, Rowan MJ (2014) mGlu5 receptors and cellular prion protein mediate amyloid-beta-facilitated synaptic long-term depression in vivo. Nat Commun 5:3374. https://doi.org/10.1038/ncomms4374

    PubMed  PubMed Central  Google Scholar 

  77. Hutter G, Heppner FL, Aguzzi A (2003) No superoxide dismutase activity of cellular prion protein in vivo. Biol Chem 384:1279–1285. https://doi.org/10.1515/Bc.2003.142

    Article  CAS  PubMed  Google Scholar 

  78. Jackson WS, Krost C, Borkowski AW, Kaczmarczyk L (2014) Translation of the prion protein mRNA is robust in astrocytes but does not amplify during reactive astrocytosis in the mouse brain. PLoS One 9:e95958. https://doi.org/10.1371/journal.pone.0095958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Kaczmarczyk L, Mende Y, Zevnik B, Jackson WS (2016) Manipulating the prion protein gene sequence and expression levels with CRISPR/Cas9. PLoS One 11:e0154604. https://doi.org/10.1371/journal.pone.0154604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Kaiser DM, Acharya M, Leighton PL, Wang H, Daude N, Wohlgemuth S, Shi B, Allison WT (2012) Amyloid beta precursor protein and prion protein have a conserved interaction affecting cell adhesion and CNS development. PLoS One 7:e51305. https://doi.org/10.1371/journal.pone.0051305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Karapetyan YE, Sferrazza GF, Zhou MH, Ottenberg G, Spicer T, Chase P, Fallahi M, Hodder P, Weissmann C, Lasmezas CI (2013) Unique drug screening approach for prion diseases identifies tacrolimus and astemizole as antiprion agents. Proc Natl Acad Sci USA 110:7044–7049. https://doi.org/10.1073/pnas.1303510110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kawasaki Y, Kawagoe K, Chen CJ, Teruya K, Sakasegawa Y, Doh-Ura K (2007) Orally administered amyloidophilic compound is effective in prolonging the incubation periods of animals cerebrally infected with prion diseases in a prion strain-dependent manner. J Virol 81:12889–12898. https://doi.org/10.1128/JVI.01563-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kessels HW, Nguyen LN, Nabavi S, Malinow R (2010) The prion protein as a receptor for amyloid-beta. Nature 466:E3–E4. https://doi.org/10.1038/nature09217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, Chen L, Villemaire M, Ali Z, Jirik FR, Zamponi GW (2008) Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol 181:551–565. https://doi.org/10.1083/jcb.200711002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim BH, Lee HG, Choi JK, Kim JI, Choi EK, Carp RI, Kim YS (2004) The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation. Brain Res Mol Brain Res 124:40–50. https://doi.org/10.1016/j.molbrainres.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  86. Klohn PC, Farmer M, Linehan JM, O’Malley C, Fernandez de Marco M, Taylor W, Farrow M, Khalili-Shirazi A, Brandner S, Collinge J (2012) PrP antibodies do not trigger mouse hippocampal neuron apoptosis. Science 335:52. https://doi.org/10.1126/science.1215579

    Article  PubMed  CAS  Google Scholar 

  87. Klyubin I, Nicoll AJ, Khalili-Shirazi A, Farmer M, Canning S, Mably A, Linehan J, Brown A, Wakeling M, Brandner S, Walsh DM, Rowan MJ, Collinge J (2014) Peripheral administration of a humanized anti-PrP antibody blocks Alzheimer’s disease Abeta synaptotoxicity. J Neurosci 34:6140–6145. https://doi.org/10.1523/JNEUROSCI.3526-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kolodziejczak D, Da Costa Dias B, Zuber C, Jovanovic K, Omar A, Beck J, Vana K, Mbazima V, Richt J, Brenig B, Weiss SF (2010) Prion interaction with the 37-kDa/67-kDa laminin receptor on enterocytes as a cellular model for intestinal uptake of prions. J Mol Biol 402:293–300. https://doi.org/10.1016/j.jmb.2010.06.055

    Article  CAS  PubMed  Google Scholar 

  89. Kostylev MA, Kaufman AC, Nygaard HB, Patel P, Haas LT, Gunther EC, Vortmeyer A, Strittmatter SM (2015) Prion-protein-interacting amyloid-beta oligomers of high molecular weight are tightly correlated with memory impairment in multiple alzheimer mouse models. J Biol Chem 290:17415–17438. https://doi.org/10.1074/jbc.M115.643577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kretzschmar HA, Prusiner SB, Stowring LE, DeArmond SJ (1986) Scrapie prion proteins are synthesized in neurons. Am J Pathol 122:1–5

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kudo W, Lee HP, Zou WQ, Wang X, Perry G, Zhu X, Smith MA, Petersen RB, Lee HG (2012) Cellular prion protein is essential for oligomeric amyloid-beta-induced neuronal cell death. Hum Mol Genet 21:1138–1144. https://doi.org/10.1093/hmg/ddr542

    Article  CAS  PubMed  Google Scholar 

  92. Kuffer A, Lakkaraju AK, Mogha A, Petersen SC, Airich K, Doucerain C, Marpakwar R, Bakirci P, Senatore A, Monnard A, Schiavi C, Nuvolone M, Grosshans B, Hornemann S, Bassilana F, Monk KR, Aguzzi A (2016) The prion protein is an agonistic ligand of the G protein-coupled receptor Adgrg6. Nature 536:464–468. https://doi.org/10.1038/nature19312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kuwahara C, Takeuchi AM, Nishimura T, Haraguchi K, Kubosaki A, Matsumoto Y, Saeki K, Matsumoto Y, Yokoyama T, Itohara S, Onodera T (1999) Prions prevent neuronal cell-line death. Nature 400:225–226. https://doi.org/10.1038/22241

    Article  CAS  PubMed  Google Scholar 

  94. Larson M, Sherman MA, Amar F, Nuvolone M, Schneider JA, Bennett DA, Aguzzi A, Lesne SE (2012) The complex PrP(c)-Fyn couples human oligomeric Abeta with pathological tau changes in Alzheimer’s disease. J Neurosci 32:16857–16871a. https://doi.org/10.1523/JNEUROSCI.1858-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457:1128–1132. https://doi.org/10.1038/nature07761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Le Pichon CE, Valley MT, Polymenidou M, Chesler AT, Sagdullaev BT, Aguzzi A, Firestein S (2009) Olfactory behavior and physiology are disrupted in prion protein knockout mice. Nat Neurosci 12:60–69. https://doi.org/10.1038/nn.2238

    Article  PubMed  CAS  Google Scholar 

  97. Lewis V, Hill AF, Haigh CL, Klug GM, Masters CL, Lawson VA, Collins SJ (2009) Increased proportions of C1 truncated prion protein protect against cellular M1000 prion infection. J Neuropathol Exp Neurol 68:1125–1135. https://doi.org/10.1097/NEN.0b013e3181b96981

    Article  CAS  PubMed  Google Scholar 

  98. Li A, Christensen HM, Stewart LR, Roth KA, Chiesa R, Harris DA (2007) Neonatal lethality in transgenic mice expressing prion protein with a deletion of residues 105-125. EMBO J 26:548–558. https://doi.org/10.1038/sj.emboj.7601507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Lledo PM, Tremblay P, DeArmond SJ, Prusiner SB, Nicoll RA (1996) Mice deficient for prion protein exhibit normal neuronal excitability and synaptic transmission in the hippocampus. Proc Natl Acad Sci USA 93:2403–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lopes MH, Hajj GN, Muras AG, Mancini GL, Castro RM, Ribeiro KC, Brentani RR, Linden R, Martins VR (2005) Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J Neurosci 25:11330–11339. https://doi.org/10.1523/JNEUROSCI.2313-05.2005

    Article  CAS  PubMed  Google Scholar 

  101. Lopez Garcia F, Zahn R, Riek R, Wuthrich K (2000) NMR structure of the bovine prion protein. Proc Natl Acad Sci USA 97:8334–8339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Luhrs T, Riek R, Guntert P, Wuthrich K (2003) NMR structure of the human doppel protein. J Mol Biol 326:1549–1557

    Article  CAS  PubMed  Google Scholar 

  103. Lysek DA, Schorn C, Nivon LG, Esteve-Moya V, Christen B, Calzolai L, von Schroetter C, Fiorito F, Herrmann T, Guntert P, Wuthrich K (2005) Prion protein NMR structures of cats, dogs, pigs, and sheep. Proc Natl Acad Sci USA 102:640–645. https://doi.org/10.1073/pnas.0408937102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mahal SP, Baker CA, Demczyk CA, Smith EW, Julius C, Weissmann C (2007) Prion strain discrimination in cell culture: the cell panel assay. Proc Natl Acad Sci USA 104:20908–20913. https://doi.org/10.1073/pnas.0710054104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Malaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, Stuermer CA (2009) Regulation of embryonic cell adhesion by the prion protein. PLoS Biol 7:e55. https://doi.org/10.1371/journal.pbio.1000055

    Article  PubMed  CAS  Google Scholar 

  106. Mallucci G, Dickinson A, Linehan J, Klohn PC, Brandner S, Collinge J (2003) Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302:871–874. https://doi.org/10.1126/science.1090187

    Article  CAS  PubMed  Google Scholar 

  107. Mallucci GR, Ratte S, Asante EA, Linehan J, Gowland I, Jefferys JG, Collinge J (2002) Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 21:202–210. https://doi.org/10.1093/emboj/21.3.202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Manson JC, Clarke AR, Hooper ML, Aitchison L, McConnell I, Hope J (1994) 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 8:121–127. https://doi.org/10.1007/BF02780662

    Article  CAS  PubMed  Google Scholar 

  109. Manson JC, Clarke AR, Mcbride PA, Mcconnell I, Hope J (1994) Prp gene dosage determines the timing but not the final intensity or distribution of lesions in scrapie pathology. Neurodegener J Neurodegener Disord Neuroprot Neuroregener 3:331–340

    CAS  Google Scholar 

  110. Manson JC, Hope J, Clarke AR, Johnston A, Black C, MacLeod N (1995) PrP gene dosage and long term potentiation. Neurodegener J Neurodegener Disord Neuroprot Neuroregener 4:113–114

    CAS  Google Scholar 

  111. Mao X, Ou MT, Karuppagounder SS, Kam TI, Yin X, Xiong Y, Ge P, Umanah GE, Brahmachari S, Shin JH, Kang HC, Zhang J, Xu J, Chen R, Park H, Andrabi SA, Kang SU, Goncalves RA, Liang Y, Zhang S, Qi C, Lam S, Keiler JA, Tyson J, Kim D, Panicker N, Yun SP, Workman CJ, Vignali DA, Dawson VL, Ko HS, Dawson TM (2016) Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science. https://doi.org/10.1126/science.aah3374

    Google Scholar 

  112. Martins VR, Graner E, Garcia-Abreu J, de Souza SJ, Mercadante AF, Veiga SS, Zanata SM, Neto VM, Brentani RR (1997) Complementary hydropathy identifies a cellular prion protein receptor. Nat Med 3:1376–1382

    Article  CAS  PubMed  Google Scholar 

  113. Mays CE, Kim C, Haldiman T, van der Merwe J, Lau A, Yang J, Grams J, Di Bari MA, Nonno R, Telling GC, Kong Q, Langeveld J, McKenzie D, Westaway D, Safar JG (2014) Prion disease tempo determined by host-dependent substrate reduction. J Clin Investig 124:847–858. https://doi.org/10.1172/JCI72241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mays CE, van der Merwe J, Kim C, Haldiman T, McKenzie D, Safar JG, Westaway D (2015) Prion infectivity plateaus and conversion to symptomatic disease originate from falling precursor levels and increased levels of oligomeric PrPSc species. J Virol 89:12418–12426. https://doi.org/10.1128/JVI.02142-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. McLennan NF, Brennan PM, McNeill A, Davies I, Fotheringham A, Rennison KA, Ritchie D, Brannan F, Head MW, Ironside JW, Williams A, Bell JE (2004) Prion protein accumulation and neuroprotection in hypoxic brain damage. Am J Pathol 165:227–235. https://doi.org/10.1016/S0002-9440(10)63291-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mehrabian M, Brethour D, MacIsaac S, Kim JK, Gunawardana CG, Wang H, Schmitt-Ulms G (2014) CRISPR–Cas9-based knockout of the prion protein and its effect on the proteome. PLoS One 9:e114594. https://doi.org/10.1371/journal.pone.0114594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Mehrabian M, Brethour D, Wang H, Xi Z, Rogaeva E, Schmitt-Ulms G (2015) The prion protein controls polysialylation of neural cell adhesion molecule 1 during cellular morphogenesis. PLoS One 10:e0133741. https://doi.org/10.1371/journal.pone.0133741

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Mehrabian M, Brethour D, Williams D, Wang H, Arnould H, Schneider B, Schmitt-Ulms G (2016) Prion protein deficiency causes diverse proteome shifts in cell models that escape detection in brain tissue. PLoS One 11:e0156779. https://doi.org/10.1371/journal.pone.0156779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Mehrabian M, Ehsani S, Schmitt-Ulms G (2014) An emerging role of the cellular prion protein as a modulator of a morphogenetic program underlying epithelial-to-mesenchymal transition. Front Cell Dev Biol 2:53. https://doi.org/10.3389/fcell.2014.00053

    Article  PubMed  PubMed Central  Google Scholar 

  120. Mehrabian M, Hildebrandt H, Schmitt-Ulms G (2016) NCAM1 polysialylation: the prion protein’s elusive reason for being? ASN Neuro. https://doi.org/10.1177/1759091416679074

    PubMed  PubMed Central  Google Scholar 

  121. Mercer RC, Ma L, Watts JC, Strome R, Wohlgemuth S, Yang J, Cashman NR, Coulthart MB, Schmitt-Ulms G, Jhamandas JH, Westaway D (2013) The prion protein modulates A-type K+ currents mediated by Kv4.2 complexes through dipeptidyl aminopeptidase-like protein 6. J Biol Chem 288:37241–37255. https://doi.org/10.1074/jbc.M113.488650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Minikel EV, Vallabh SM, Lek M, Estrada K, Samocha KE, Sathirapongsasuti JF, McLean CY, Tung JY, Yu LP, Gambetti P, Blevins J, Zhang S, Cohen Y, Chen W, Yamada M, Hamaguchi T, Sanjo N, Mizusawa H, Nakamura Y, Kitamoto T, Collins SJ, Boyd A, Will RG, Knight R, Ponto C, Zerr I, Kraus TF, Eigenbrod S, Giese A, Calero M, de Pedro-Cuesta J, Haik S, Laplanche JL, Bouaziz-Amar E, Brandel JP, Capellari S, Parchi P, Poleggi A, Ladogana A, O’Donnell-Luria AH, Karczewski KJ, Marshall JL, Boehnke M, Laakso M, Mohlke KL, Kahler A, Chambert K, McCarroll S, Sullivan PF, Hultman CM, Purcell SM, Sklar P, van der Lee SJ, Rozemuller A, Jansen C, Hofman A, Kraaij R, van Rooij JG, Ikram MA, Uitterlinden AG, van Duijn CM, Exome Aggregation C, Daly MJ, MacArthur DG (2016) Quantifying prion disease penetrance using large population control cohorts. Sci Transl Med 8:322ra329. https://doi.org/10.1126/scitranslmed.aad5169

    Google Scholar 

  123. Mo H, Moore RC, Cohen FE, Westaway D, Prusiner SB, Wright PE, Dyson HJ (2001) Two different neurodegenerative diseases caused by proteins with similar structures. Proc Natl Acad Sci USA 98:2352–2357. https://doi.org/10.1073/pnas.051627998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Moore RC, Lee IY, Silverman GL, Harrison PM, Strome R, Heinrich C, Karunaratne A, Pasternak SH, Chishti MA, Liang Y, Mastrangelo P, Wang K, Smit AF, Katamine S, Carlson GA, Cohen FE, Prusiner SB, Melton DW, Tremblay P, Hood LE, Westaway D (1999) Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J Mol Biol 292:797–817. https://doi.org/10.1006/jmbi.1999.3108

    Article  CAS  PubMed  Google Scholar 

  125. Moore RC, Mastrangelo P, Bouzamondo E, Heinrich C, Legname G, Prusiner SB, Hood L, Westaway D, DeArmond SJ, Tremblay P (2001) Doppel-induced cerebellar degeneration in transgenic mice. Proc Natl Acad Sci USA 98:15288–15293. https://doi.org/10.1073/pnas.251550798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Moser M, Colello RJ, Pott U, Oesch B (1995) Developmental expression of the prion protein gene in glial cells. Neuron 14:509–517

    Article  CAS  PubMed  Google Scholar 

  127. Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche J-L, Lehmann S, Launay JM, Kellermann O (2000) Signal transduction through prion protein. Science 289:1925–1928

    Article  CAS  PubMed  Google Scholar 

  128. Nico PB, de-Paris F, Vinade ER, Amaral OB, Rockenbach I, Soares BL, Guarnieri R, Wichert-Ana L, Calvo F, Walz R, Izquierdo I, Sakamoto AC, Brentani R, Martins VR, Bianchin MM (2005) Altered behavioural response to acute stress in mice lacking cellular prion protein. Behav Brain Res 162:173–181. https://doi.org/10.1016/j.bbr.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  129. Nicoll AJ, Panico S, Freir DB, Wright D, Terry C, Risse E, Herron CE, O’Malley T, Wadsworth JD, Farrow MA, Walsh DM, Saibil HR, Collinge J (2013) Amyloid-beta nanotubes are associated with prion protein-dependent synaptotoxicity. Nat Commun 4:2416. https://doi.org/10.1038/ncomms3416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Nishida N, Tremblay P, Sugimoto T, Shigematsu K, Shirabe S, Petromilli C, Erpel SP, Nakaoke R, Atarashi R, Houtani T, Torchia M, Sakaguchi S, DeArmond SJ, Prusiner SB, Katamine S (1999) A mouse prion protein transgene rescues mice deficient for the prion protein gene from purkinje cell degeneration and demyelination. Lab Investig 79:689–697

    CAS  PubMed  Google Scholar 

  131. Nuvolone M, Aguzzi A (2015) Altered monoaminergic systems and depressive-like behavior in congenic prion protein knock-out mice. J Biol Chem 290:26350. https://doi.org/10.1074/jbc.L115.689117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nuvolone M, Hermann M, Sorce S, Russo G, Tiberi C, Schwarz P, Minikel E, Sanoudou D, Pelczar P, Aguzzi A (2016) Strictly co-isogenic C57BL/6J-Prnp−/− mice: a rigorous resource for prion science. J Exp Med 213:313–327. https://doi.org/10.1084/jem.20151610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nuvolone M, Kana V, Hutter G, Sakata D, Mortin-Toth SM, Russo G, Danska JS, Aguzzi A (2013) SIRPalpha polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells. J Exp Med 210:2539–2552. https://doi.org/10.1084/jem.20131274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Oesch B, Westaway D, Wälchli M, McKinley MP, Kent SBH, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE, Prusiner SB, Weissmann C (1985) A cellular gene encodes scrapie PrP 27-30 protein. Cell 40:735–746

    Article  CAS  PubMed  Google Scholar 

  135. Owen F, Poulter M, Collinge J, Crow TJ (1990) Codon 129 changes in the prion protein gene in Caucasians. Am J Hum Genet 46:1215–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Paisley D, Banks S, Selfridge J, McLennan NF, Ritchie AM, McEwan C, Irvine DS, Saunders PT, Manson JC, Melton DW (2004) Male infertility and DNA damage in Doppel knockout and prion protein/Doppel double-knockout mice. Am J Pathol 164:2279–2288. https://doi.org/10.1016/S0002-9440(10)63784-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Paitel E, Alves da Costa C, Vilette D, Grassi J, Checler F (2002) Overexpression of PrPc triggers caspase 3 activation: potentiation by proteasome inhibitors and blockade by anti-PrP antibodies. J Neurochem 83:1208–1214

    Article  CAS  PubMed  Google Scholar 

  138. Paitel E, Fahraeus R, Checler F (2003) Cellular prion protein sensitizes neurons to apoptotic stimuli through Mdm2-regulated and p53-dependent caspase 3-like activation. J Biol Chem 278:10061–10066. https://doi.org/10.1074/jbc.M211580200

    Article  CAS  PubMed  Google Scholar 

  139. Paitel E, Sunyach C, Alves da Costa C, Bourdon JC, Vincent B, Checler F (2004) Primary cultured neurons devoid of cellular prion display lower responsiveness to staurosporine through the control of p53 at both transcriptional and post-transcriptional levels. J Biol Chem 279:612–618. https://doi.org/10.1074/jbc.M310453200

    Article  CAS  PubMed  Google Scholar 

  140. Parkin ET, Watt NT, Hussain I, Eckman EA, Eckman CB, Manson JC, Baybutt HN, Turner AJ, Hooper NM (2007) Cellular prion protein regulates beta-secretase cleavage of the Alzheimer’s amyloid precursor protein. Proc Natl Acad Sci USA 104:11062–11067. https://doi.org/10.1073/pnas.0609621104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Passet B, Young R, Makhzami S, Vilotte M, Jaffrezic F, Halliez S, Bouet S, Marthey S, Khalife M, Kanellopoulos-Langevin C, Beringue V, Le Provost F, Laude H, Vilotte JL (2012) Prion protein and Shadoo are involved in overlapping embryonic pathways and trophoblastic development. PLoS One 7:e41959. https://doi.org/10.1371/journal.pone.0041959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Perera WS, Hooper NM (2001) Ablation of the metal ion-induced endocytosis of the prion protein by disease-associated mutation of the octarepeat region. Curr Biol 11:519–523

    Article  CAS  PubMed  Google Scholar 

  143. Pocanschi CL, Ehsani S, Mehrabian M, Wille H, Reginold W, Trimble WS, Wang H, Yee A, Arrowsmith CH, Bozoky Z, Kay LE, Forman-Kay JD, Rini JM, Schmitt-Ulms G (2013) The ZIP5 ectodomain co-localizes with PrP and may acquire a PrP-like fold that assembles into a dimer. PLoS One 8:e72446. https://doi.org/10.1371/journal.pone.0072446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Premzl M, Gamulin V (2007) Comparative genomic analysis of prion genes. BMC Genom 8:1. https://doi.org/10.1186/1471-2164-8-1

    Article  CAS  Google Scholar 

  145. Premzl M, Sangiorgio L, Strumbo B, Marshall Graves JA, Simonic T, Gready JE (2003) Shadoo, a new protein highly conserved from fish to mammals and with similarity to prion protein. Gene 314:89–102

    Article  CAS  PubMed  Google Scholar 

  146. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216:136–144

    Article  CAS  PubMed  Google Scholar 

  147. Prusiner SB, Groth D, Serban A, Koehler R, Foster D, Torchia M, Burton D, Yang SL, DeArmond SJ (1993) Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc Natl Acad Sci USA 90:10608–10612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Qin K, Zhao L, Tang Y, Bhatta S, Simard JM, Zhao RY (2006) Doppel-induced apoptosis and counteraction by cellular prion protein in neuroblastoma and astrocytes. Neuroscience 141:1375–1388. https://doi.org/10.1016/j.neuroscience.2006.04.068

    Article  CAS  PubMed  Google Scholar 

  149. Rambold AS, Muller V, Ron U, Ben-Tal N, Winklhofer KF, Tatzelt J (2008) Stress-protective signalling of prion protein is corrupted by scrapie prions. EMBO J 27:1974–1984. https://doi.org/10.1038/emboj.2008.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR–Cas9 system. Nat Protoc 8:2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rangel A, Burgaya F, Gavin R, Soriano E, Aguzzi A, Del Rio JA (2007) Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: role of AMPA/kainate receptors. J Neurosci Res 85:2741–2755. https://doi.org/10.1002/jnr.21215

    Article  CAS  PubMed  Google Scholar 

  152. Ravenscroft G, Nolent F, Rajagopalan S, Meireles AM, Paavola KJ, Gaillard D, Alanio E, Buckland M, Arbuckle S, Krivanek M, Maluenda J, Pannell S, Gooding R, Ong RW, Allcock RJ, Carvalho ED, Carvalho MD, Kok F, Talbot WS, Melki J, Laing NG (2015) Mutations of GPR126 are responsible for severe arthrogryposis multiplex congenita. Am J Hum Genet 96:955–961. https://doi.org/10.1016/j.ajhg.2015.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Resenberger UK, Harmeier A, Woerner AC, Goodman JL, Muller V, Krishnan R, Vabulas RM, Kretzschmar HA, Lindquist S, Hartl FU, Multhaup G, Winklhofer KF, Tatzelt J (2011) The cellular prion protein mediates neurotoxic signalling of beta-sheet-rich conformers independent of prion replication. EMBO J 30:2057–2070. https://doi.org/10.1038/emboj.2011.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Richt JA, Kasinathan P, Hamir AN, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J, Kato S, Ishida I, Soto C, Robl JM, Kuroiwa Y (2007) Production of cattle lacking prion protein. Nat Biotechnol 25:132–138. https://doi.org/10.1038/nbt1271

    Article  CAS  PubMed  Google Scholar 

  155. Rieger R, Edenhofer F, Lasmezas CI, Weiss S (1997) The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med 3:1383–1388

    Article  CAS  PubMed  Google Scholar 

  156. Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K (1996) NMR structure of the mouse prion protein domain PrP(121–231). Nature 382:180–182. https://doi.org/10.1038/382180a0

    Article  CAS  PubMed  Google Scholar 

  157. Rivera-Milla E, Oidtmann B, Panagiotidis CH, Baier M, Sklaviadis T, Hoffmann R, Zhou Y, Solis GP, Stuermer CA, Malaga-Trillo E (2006) Disparate evolution of prion protein domains and the distinct origin of Doppel- and prion-related loci revealed by fish-to-mammal comparisons. FASEB J 20:317–319. https://doi.org/10.1096/fj.05-4279fje

    Article  CAS  PubMed  Google Scholar 

  158. Roffe M, Beraldo FH, Bester R, Nunziante M, Bach C, Mancini G, Gilch S, Vorberg I, Castilho BA, Martins VR, Hajj GN (2010) Prion protein interaction with stress-inducible protein 1 enhances neuronal protein synthesis via mTOR. Proc Natl Acad Sci USA 107:13147–13152. https://doi.org/10.1073/pnas.1000784107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Rossi D, Cozzio A, Flechsig E, Klein MA, Rulicke T, Aguzzi A, Weissmann C (2001) Onset of ataxia and Purkinje cell loss in PrP null mice inversely correlated with Dpl level in brain. EMBO J 20:694–702. https://doi.org/10.1093/emboj/20.4.694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Roucou X, Giannopoulos PN, Zhang Y, Jodoin J, Goodyer CG, LeBlanc A (2005) Cellular prion protein inhibits proapoptotic Bax conformational change in human neurons and in breast carcinoma MCF-7 cells. Cell Death Differ 12:783–795. https://doi.org/10.1038/sj.cdd.4401629

    Article  CAS  PubMed  Google Scholar 

  161. Rushworth JV, Griffiths HH, Watt NT, Hooper NM (2013) Prion protein-mediated toxicity of amyloid-beta oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem 288:8935–8951. https://doi.org/10.1074/jbc.M112.400358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rutishauser D, Mertz KD, Moos R, Brunner E, Rulicke T, Calella AM, Aguzzi A (2009) The comprehensive native interactome of a fully functional tagged prion protein. PLoS One 4:e4446. https://doi.org/10.1371/journal.pone.0004446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Safar JG, DeArmond SJ, Kociuba K, Deering C, Didorenko S, Bouzamondo-Bernstein E, Prusiner SB, Tremblay P (2005) Prion clearance in bigenic mice. J Gen Virol 86:2913–2923. https://doi.org/10.1099/vir.0.80947-0

    Article  CAS  PubMed  Google Scholar 

  164. Sailer A, Büeler H, Fischer M, Aguzzi A, Weissmann C (1994) No propagation of prions in mice devoid of PrP. Cell 77:967–968

    Article  CAS  PubMed  Google Scholar 

  165. Sakaguchi S, Katamine S, Nishida N, Moriuchi R, Shigematsu K, Sugimoto T, Nakatani A, Kataoka Y, Houtani T, Shirabe S, Okada H, Hasegawa S, Miyamoto T, Noda T (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380:528–531. https://doi.org/10.1038/380528a0

    Article  CAS  PubMed  Google Scholar 

  166. Sakthivelu V, Seidel RP, Winklhofer KF, Tatzelt J (2011) Conserved stress-protective activity between prion protein and Shadoo. J Biol Chem 286:8901–8908. https://doi.org/10.1074/jbc.M110.185470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sakudo A, Onodera T, Ikuta K (2007) Prion protein gene-deficient cell lines: powerful tools for prion biology. Microbiol Immunol 51:1–13

    Article  CAS  PubMed  Google Scholar 

  168. Salazar SV, Gallardo C, Kaufman AC, Herber CS, Haas LT, Robinson S, Manson JC, Lee MK, Strittmatter SM (2017) Conditional deletion of prnp rescues behavioral and synaptic deficits after disease onset in transgenic Alzheimer’s disease. J Neurosci. https://doi.org/10.1523/JNEUROSCI.0722-17.2017

    Google Scholar 

  169. Sandberg MK, Al-Doujaily H, Sharps B, Clarke AR, Collinge J (2011) Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 470:540–542. https://doi.org/10.1038/nature09768

    Article  CAS  PubMed  Google Scholar 

  170. Sandberg MK, Al-Doujaily H, Sharps B, De Oliveira MW, Schmidt C, Richard-Londt A, Lyall S, Linehan JM, Brandner S, Wadsworth JD, Clarke AR, Collinge J (2014) Prion neuropathology follows the accumulation of alternate prion protein isoforms after infective titre has peaked. Nat Commun 5:4347. https://doi.org/10.1038/ncomms5347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Santuccione A, Sytnyk V, Leshchyns’ka I, Schachner M (2005) Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. J Cell Biol 169:341–354. https://doi.org/10.1083/jcb.200409127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Schmitt-Ulms G, Ehsani S, Watts JC, Westaway D, Wille H (2009) Evolutionary descent of prion genes from the ZIP family of metal ion transporters. PLoS One 4:e7208. https://doi.org/10.1371/journal.pone.0007208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Schmitt-Ulms G, Hansen K, Liu J, Cowdrey C, Yang J, DeArmond SJ, Cohen FE, Prusiner SB, Baldwin MA (2004) Time-controlled transcardiac perfusion cross-linking for the study of protein interactions in complex tissues. Nat Biotechnol 22:724–731. https://doi.org/10.1038/nbt969

    Article  CAS  PubMed  Google Scholar 

  174. Schmitt-Ulms G, Legname G, Baldwin MA, Ball HL, Bradon N, Bosque PJ, Crossin KL, Edelman GM, DeArmond SJ, Cohen FE, Prusiner SB (2001) Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol 314:1209–1225. https://doi.org/10.1006/jmbi.2000.5183

    Article  CAS  PubMed  Google Scholar 

  175. Schneider B, Mutel V, Pietri M, Ermonval M, Mouillet-Richard S, Kellermann O (2003) NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 100:13326–13331. https://doi.org/10.1073/pnas.2235648100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608. https://doi.org/10.15252/emmm.201606210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Shibuya S, Higuchi J, Shin RW, Tateishi J, Kitamoto T (1998) Codon 219 Lys allele of PRNP is not found in sporadic Creutzfeldt–Jakob disease. Ann Neurol 43:826–828. https://doi.org/10.1002/ana.410430618

    Article  CAS  PubMed  Google Scholar 

  178. Shmerling D, Hegyi I, Fischer M, Blattler T, Brandner S, Gotz J, Rulicke T, Flechsig E, Cozzio A, von Mering C, Hangartner C, Aguzzi A, Weissmann C (1998) Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93:203–214

    Article  CAS  PubMed  Google Scholar 

  179. Shyng S-L, Moulder KL, Lesko A, Harris DA (1995) The N-terminal domain of a glycolipid-anchored prion protein is essential for its endocytosis via clathrin-coated pits. J Biol Chem 270:14793–14800

    Article  CAS  PubMed  Google Scholar 

  180. Shyu WC, Lin SZ, Chiang MF, Ding DC, Li KW, Chen SF, Yang HI, Li H (2005) Overexpression of PrPC by adenovirus-mediated gene targeting reduces ischemic injury in a stroke rat model. J Neurosci 25:8967–8977. https://doi.org/10.1523/JNEUROSCI.1115-05.2005

    Article  CAS  PubMed  Google Scholar 

  181. Silber BM, Gever JR, Rao S, Li Z, Renslo AR, Widjaja K, Wong C, Giles K, Freyman Y, Elepano M, Irwin JJ, Jacobson MP, Prusiner SB (2014) Novel compounds lowering the cellular isoform of the human prion protein in cultured human cells. Bioorg Med Chem 22:1960–1972. https://doi.org/10.1016/j.bmc.2014.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Silva JL, Lima LM, Foguel D, Cordeiro Y (2008) Intriguing nucleic-acid-binding features of mammalian prion protein. Trends Biochem Sci 33:132–140. https://doi.org/10.1016/j.tibs.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  183. Slapsak U, Salzano G, Amin L, Abskharon RN, Ilc G, Zupancic B, Biljan I, Plavec J, Giachin G, Legname G (2016) The N terminus of the prion protein mediates functional interactions with the neuronal cell adhesion molecule (NCAM) fibronectin domain. J Biol Chem 291:21857–21868. https://doi.org/10.1074/jbc.M116.743435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Solforosi L, Criado JR, McGavern DB, Wirz S, Sanchez-Alavez M, Sugama S, DeGiorgio LA, Volpe BT, Wiseman E, Abalos G, Masliah E, Gilden D, Oldstone MB, Conti B, Williamson RA (2004) Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science 303:1514–1516. https://doi.org/10.1126/science.1094273

    Article  CAS  PubMed  Google Scholar 

  185. Sonati T, Reimann RR, Falsig J, Baral PK, O’Connor T, Hornemann S, Yaganoglu S, Li B, Herrmann US, Wieland B, Swayampakula M, Rahman MH, Das D, Kav N, Riek R, Liberski PP, James MN, Aguzzi A (2013) The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 501:102–106. https://doi.org/10.1038/nature12402

    Article  CAS  PubMed  Google Scholar 

  186. Spielhaupter C, Schatzl HM (2001) PrPC directly interacts with proteins involved in signaling pathways. J Biol Chem 276:44604–44612. https://doi.org/10.1074/jbc.M103289200

    Article  CAS  PubMed  Google Scholar 

  187. Stahl N, Borchelt DR, Hsiao K, Prusiner SB (1987) Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 51:229–240

    Article  CAS  PubMed  Google Scholar 

  188. Steele AD, Emsley JG, Ozdinler PH, Lindquist S, Macklis JD (2006) Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci USA 103:3416–3421. https://doi.org/10.1073/pnas.0511290103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Steele AD, Lindquist S, Aguzzi A (2007) The prion protein knockout mouse: a phenotype under challenge. Prion 1:83–93

    Article  PubMed  PubMed Central  Google Scholar 

  190. Steele AD, Zhou Z, Jackson WS, Zhu C, Auluck P, Moskowitz MA, Chesselet MF, Lindquist S (2009) Context dependent neuroprotective properties of prion protein (PrP). Prion 3:240–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Stohr J, Watts JC, Legname G, Oehler A, Lemus A, Nguyen HO, Sussman J, Wille H, DeArmond SJ, Prusiner SB, Giles K (2011) Spontaneous generation of anchorless prions in transgenic mice. Proc Natl Acad Sci USA 108:21223–21228. https://doi.org/10.1073/pnas.1117827108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Striebel JF, Race B, Chesebro B (2013) Prion protein and susceptibility to kainate-induced seizures: genetic pitfalls in the use of PrP knockout mice. Prion 7:280–285. https://doi.org/10.4161/pri.25738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Sunyach C, Jen A, Deng J, Fitzgerald KT, Frobert Y, Grassi J, McCaffrey MW, Morris R (2003) The mechanism of internalization of glycosylphosphatidylinositol-anchored prion protein. EMBO J 22:3591–3601. https://doi.org/10.1093/emboj/cdg344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Taylor DR, Hooper NM (2006) The prion protein and lipid rafts. Mol Membr Biol 23:89–99. https://doi.org/10.1080/09687860500449994

    Article  CAS  PubMed  Google Scholar 

  195. Taylor KM, Muraina IA, Brethour D, Schmitt-Ulms G, Nimmanon T, Ziliotto S, Kille P, Hogstrand C (2016) Zinc transporter ZIP10 forms a heteromer with ZIP6 which regulates embryonic development and cell migration. Biochem J 473:2531–2544. https://doi.org/10.1042/BCJ20160388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Tobler I, Deboer T, Fischer M (1997) Sleep and sleep regulation in normal and prion protein-deficient mice. J Neurosci 17:1869–1879

    CAS  PubMed  Google Scholar 

  197. Tobler I, Gaus SE, Deboer T, Achermann P, Fischer M, Rulicke T, Moser M, Oesch B, McBride PA, Manson JC (1996) Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380:639–642. https://doi.org/10.1038/380639a0

    Article  CAS  PubMed  Google Scholar 

  198. Tremblay P, Meiner Z, Galou M, Heinrich C, Petromilli C, Lisse T, Cayetano J, Torchia M, Mobley W, Bujard H, DeArmond SJ, Prusiner SB (1998) Doxycyline control of prion protein transgene expression modulates prion disease in mice. Proc Natl Acad Sci USA 95:12580–12585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A, Wisniewski T, Koleske AJ, Gunther EC, Nygaard HB, Strittmatter SM (2013) Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer abeta oligomer bound to cellular prion protein. Neuron 79:887–902. https://doi.org/10.1016/j.neuron.2013.06.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A, Wisniewski T, Gunther EC, Strittmatter SM (2012) Alzheimer amyloid-beta oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 15:1227–1235. https://doi.org/10.1038/nn.3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Urrea L, Segura-Feliu M, Masuda-Suzukake M, Hervera A, Pedraz L, Garcia Aznar JM, Vila M, Samitier J, Torrents E, Ferrer I, Gavin R, Hagesawa M, Del Rio JA (2017) Involvement of cellular prion protein in alpha-synuclein transport in neurons. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0451-4

    Google Scholar 

  202. Victoria GS, Zurzolo C (2017) The spread of prion-like proteins by lysosomes and tunneling nanotubes: implications for neurodegenerative diseases. J Cell Biol. https://doi.org/10.1083/jcb.201701047

    PubMed  Google Scholar 

  203. Viles JH, Cohen FE, Prusiner SB, Goodin DB, Wright PE, Dyson HJ (1999) Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci USA 96:2042–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wagner J, Ryazanov S, Leonov A, Levin J, Shi S, Schmidt F, Prix C, Pan-Montojo F, Bertsch U, Mitteregger-Kretzschmar G, Geissen M, Eiden M, Leidel F, Hirschberger T, Deeg AA, Krauth JJ, Zinth W, Tavan P, Pilger J, Zweckstetter M, Frank T, Bahr M, Weishaupt JH, Uhr M, Urlaub H, Teichmann U, Samwer M, Botzel K, Groschup M, Kretzschmar H, Griesinger C, Giese A (2013) Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol 125:795–813. https://doi.org/10.1007/s00401-013-1114-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Walter ED, Stevens DJ, Visconte MP, Millhauser GL (2007) The prion protein is a combined zinc and copper binding protein: Zn2+ alters the distribution of Cu2+ coordination modes. J Am Chem Soc 129:15440–15441. https://doi.org/10.1021/ja077146j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Walz R, Amaral OB, Rockenbach IC, Roesler R, Izquierdo I, Cavalheiro EA, Martins VR, Brentani RR (1999) Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia 40:1679–1682

    Article  CAS  PubMed  Google Scholar 

  207. Watt NT, Taylor DR, Kerrigan TL, Griffiths HH, Rushworth JV, Whitehouse IJ, Hooper NM (2012) Prion protein facilitates uptake of zinc into neuronal cells. Nat Commun 3:1134. https://doi.org/10.1038/ncomms2135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Watts JC, Drisaldi B, Ng V, Yang J, Strome B, Horne P, Sy MS, Yoong L, Young R, Mastrangelo P, Bergeron C, Fraser PE, Carlson GA, Mount HT, Schmitt-Ulms G, Westaway D (2007) The CNS glycoprotein Shadoo has PrP(C)-like protective properties and displays reduced levels in prion infections. EMBO J 26:4038–4050. https://doi.org/10.1038/sj.emboj.7601830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Watts JC, Huo H, Bai Y, Ehsani S, Jeon AH, Shi T, Daude N, Lau A, Young R, Xu L, Carlson GA, Williams D, Westaway D, Schmitt-Ulms G (2009) Interactome analyses identify ties of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-derived chaperones. PLoS Pathog 5:e1000608. https://doi.org/10.1371/journal.ppat.1000608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Watts JC, Stohr J, Bhardwaj S, Wille H, Oehler A, Dearmond SJ, Giles K, Prusiner SB (2011) Protease-resistant prions selectively decrease Shadoo protein. PLoS Pathog 7:e1002382. https://doi.org/10.1371/journal.ppat.1002382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Watts JC, Westaway D (2007) The prion protein family: diversity, rivalry, and dysfunction. Biochim Biophys Acta 1772:654–672. https://doi.org/10.1016/j.bbadis.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  212. Weise J, Sandau R, Schwarting S, Crome O, Wrede A, Schulz-Schaeffer W, Zerr I, Bahr M (2006) Deletion of cellular prion protein results in reduced Akt activation, enhanced postischemic caspase-3 activation, and exacerbation of ischemic brain injury. Stroke 37:1296–1300. https://doi.org/10.1161/01.STR.0000217262.03192.d4

    Article  CAS  PubMed  Google Scholar 

  213. Westaway D, DeArmond SJ, Cayetano-Canlas J, Groth D, Foster D, Yang SL, Torchia M, Carlson GA, Prusiner SB (1994) Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell 76:117–129

    Article  CAS  PubMed  Google Scholar 

  214. Westaway D, Genovesi S, Daude N, Brown R, Lau A, Lee I, Mays CE, Coomaraswamy J, Canine B, Pitstick R, Herbst A, Yang J, Ko KW, Schmitt-Ulms G, Dearmond SJ, McKenzie D, Hood L, Carlson GA (2011) Down-regulation of Shadoo in prion infections traces a pre-clinical event inversely related to PrP(Sc) accumulation. PLoS Pathog 7:e1002391. https://doi.org/10.1371/journal.ppat.1002391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Westergard L, Turnbaugh JA, Harris DA (2011) A naturally occurring C-terminal fragment of the prion protein (PrP) delays disease and acts as a dominant-negative inhibitor of PrPSc formation. J Biol Chem 286:44234–44242. https://doi.org/10.1074/jbc.M111.286195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. White MD, Farmer M, Mirabile I, Brandner S, Collinge J, Mallucci GR (2008) Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc Natl Acad Sci USA 105:10238–10243. https://doi.org/10.1073/pnas.0802759105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Whitehouse IJ, Brown D, Baybutt H, Diack AB, Kellett KA, Piccardo P, Manson JC, Hooper NM (2016) Ablation of prion protein in wild type human amyloid precursor protein (APP) transgenic mice does not alter the proteolysis of APP, levels of amyloid-beta or pathologic phenotype. PLoS One 11:e0159119. https://doi.org/10.1371/journal.pone.0159119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Whittington MA, Sidle KC, Gowland I, Meads J, Hill AF, Palmer MS, Jefferys JG, Collinge J (1995) Rescue of neurophysiological phenotype seen in PrP null mice by transgene encoding human prion protein. Nat Genet 9:197–201. https://doi.org/10.1038/ng0295-197

    Article  CAS  PubMed  Google Scholar 

  219. Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K, Alperovitch A, Poser S, Pocchiari M, Hofman A, Smith PG (1996) A new variant of Creutzfeldt–Jakob disease in the UK. Lancet 347:921–925

    Article  CAS  PubMed  Google Scholar 

  220. Wu B, McDonald AJ, Markham K, Rich CB, McHugh KP, Tatzelt J, Colby DW, Millhauser GL, Harris DA (2017) The N-terminus of the prion protein is a toxic effector regulated by the C-terminus. eLife. https://doi.org/10.7554/eLife.23473

    Google Scholar 

  221. Wu GR, Mu TC, Gao ZX, Wang J, Sy MS, Li CY (2017) Prion protein is required for tumor necrosis factor alpha (TNFalpha)-triggered nuclear factor kappa B (NF-kappaB) signaling and cytokine production. J Biol Chem. https://doi.org/10.1074/jbc.M117.787283

    Google Scholar 

  222. Yamashita S, Miyagi C, Fukada T, Kagara N, Che YS, Hirano T (2004) Zinc transporter LIVI controls epithelial–mesenchymal transition in zebrafish gastrula organizer. Nature 429:298–302. https://doi.org/10.1038/nature02545

    Article  CAS  PubMed  Google Scholar 

  223. You H, Tsutsui S, Hameed S, Kannanayakal TJ, Chen L, Xia P, Engbers JD, Lipton SA, Stys PK, Zamponi GW (2012) Abeta neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-d-aspartate receptors. Proc Natl Acad Sci USA 109:1737–1742. https://doi.org/10.1073/pnas.1110789109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Young R, Passet B, Vilotte M, Cribiu EP, Beringue V, Le Provost F, Laude H, Vilotte JL (2009) The prion or the related Shadoo protein is required for early mouse embryogenesis. FEBS Lett 583:3296–3300. https://doi.org/10.1016/j.febslet.2009.09.027

    Article  CAS  PubMed  Google Scholar 

  225. Yu G, Chen J, Xu Y, Zhu C, Yu H, Liu S, Sha H, Chen J, Xu X, Wu Y, Zhang A, Ma J, Cheng G (2009) Generation of goats lacking prion protein. Mol Reprod Dev 76:3. https://doi.org/10.1002/mrd.20960

    Article  CAS  PubMed  Google Scholar 

  226. Yu G, Jiang L, Xu Y, Guo H, Liu H, Zhang Y, Yang H, Yuan C, Ma J (2012) Silencing prion protein in MDA-MB-435 breast cancer cells leads to pleiotropic cellular responses to cytotoxic stimuli. PLoS One 7:e48146. https://doi.org/10.1371/journal.pone.0048146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Zahn R, Liu A, Luhrs T, Riek R, von Schroetter C, Lopez Garcia F, Billeter M, Calzolai L, Wider G, Wuthrich K (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci USA 97:145–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Zanata SM, Lopes MH, Mercadante AF, Hajj GN, Chiarini LB, Nomizo R, Freitas AR, Cabral AL, Lee KS, Juliano MA, de Oliveira E, Jachieri SG, Burlingame A, Huang L, Linden R, Brentani RR, Martins VR (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J 21:3307–3316. https://doi.org/10.1093/emboj/cdf325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zhang CC, Steele AD, Lindquist S, Lodish HF (2006) Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci USA 103:2184–2189. https://doi.org/10.1073/pnas.0510577103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Gerold Schmitt-Ulms, Janice Robertson, and Zaid Al-Azzawi for critical reading of the manuscript. Research in the Watts lab is supported by grants from the Canadian Institutes of Health Research (CIHR), the Natural Science and Engineering Research Council of Canada (NSERC), the Canadian Foundation for Innovation (CFI), Alzheimer Society Canada, and Parkinson Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel C. Watts.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watts, J.C., Bourkas, M.E.C. & Arshad, H. The function of the cellular prion protein in health and disease. Acta Neuropathol 135, 159–178 (2018). https://doi.org/10.1007/s00401-017-1790-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-017-1790-y

Keywords

Navigation