Skip to main content

Advertisement

Log in

TGFβ signaling reinforces pericyte properties of the non-endocrine mouse pituitary cell line TtT/GF

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The non-endocrine TtT/GF mouse pituitary cell line was derived from radiothyroidectomy-induced pituitary adenoma. In addition to morphological characteristics, because the cells are S100β-positive, they have been accepted as a model of folliculostellate cells. However, our recent microarray analysis indicated that, in contrast to folliculostellate cells, TtT/GF cells might not be terminally differentiated, as they share some properties with stem/progenitor cells, vascular endothelial cells and pericytes. The present study investigates whether transforming growth factor beta (TGFβ) can elicit further differentiation of these cells. The results showed that canonical (Tgfbr1 and Tgfbr2) and non-canonical TGFβ receptors (Tgfbr3) as well as all TGFβ ligands (Tgfb1–3) were present in TtT/GF cells, based on reverse transcription PCR. SMAD2, an intercellular signaling molecule of the TGFβ pathway, was localized in the nucleus upon TGFβ signaling. Furthermore, TGFβ induced cell colony formation, which was completely blocked by a TGFβ receptor I inhibitor (SB431542). Real-time PCR analysis indicated that TGFβ downregulated stem cell markers (Sox2 and Cd34) and upregulated pericyte markers (Nestin and Ng2). Double immunohistochemistry using mouse pituitary tissue confirmed the presence of NESTIN/NG2 double-positive cells in perivascular areas where pericytes are localized. Our results suggest that TtT/GF cells are responsive to TGFβ signaling, which is associated with cell colony formation and pericyte differentiation. As pericytes have been shown to regulate angiogenesis, tumorigenesis and stem/progenitor cells in other tissues, TtT/GF cells could be a useful model to study the role of pituitary pericytes in physiological and pathological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, Gaston-Massuet C, Mollard P, Jacques TS, Le Tissier P, Dattani MT, Pevny LH, Martinez-Barbera JP (2013) Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13:433–445

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Article  CAS  PubMed  Google Scholar 

  • Bakircioglu M, Carvalho OP, Khurshid M, Cox JJ, Tuysuz B, Barak T, Yilmaz S, Caglayan O, Dincer A, Nicholas AK, Quarrell O, Springell K, Karbani G, Malik S, Gannon C, Sheridan E, Crosier M, Lisgo SN, Lindsay S, Bilguvar K, Gergely F, Gunel M, Woods CG (2011) The essential role of centrosomal NDE1 in human cerebral cortex neurogenesis. Am J Hum Genet 88:523–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang Z, Messi ML, Olson JD, Mintz A, Delbono O (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307:C25–C38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang Z-M, Messi ML, Mintz A, Delbono O (2013) Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am J Physiol Cell Physiol 305:C1098–C1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman L, Nishimura A, Buckingham JC, Morris JF, Christian HC (2002) Externalization of annexin I from a folliculo-stellate-like cell line. Endocrinology 143:4330–4338

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Gremeaux L, Fu Q, Liekens D, Van Laere S, Vankelecom H (2009) Pituitary progenitor cells tracked down by side population dissection. Stem Cells 27:1182–1195

    Article  CAS  PubMed  Google Scholar 

  • Collett GDM, Canfield AE (2005) Angiogenesis and pericytes in the initiation of ectopic calcification. Circ Res 96:930–938

    Article  CAS  PubMed  Google Scholar 

  • Davis SW, Mortensen AH, Keisler JL, Zacharias AL, Gage PJ, Yamamura K-I, Camper SA (2016) Β-catenin is required in the neural crest and Mesencephalon for pituitary gland organogenesis. BMC Dev Biol 16:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong M, How T, Kirkbride KC, Gordon KJ, Lee JD, Hempel N, Kelly P, Moeller BJ, Marks JR, Blobe GC (2007) The type III TGF-beta receptor suppresses breast cancer progression. J Clin Invest 117:206–217

    Article  CAS  PubMed  Google Scholar 

  • de Moraes DC, Vaisman M, Conceição FL, Ortiga-Carvalho TM (2012) Pituitary development: a complex, temporal regulated process dependent on specific transcriptional factors. J Endocrinol 215:239–245

    Article  PubMed  Google Scholar 

  • Devnath S, Inoue K (2008) An insight to pituitary folliculo-stellate cells. J Neuroendocrinol 20:687–691

    Article  CAS  PubMed  Google Scholar 

  • Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson IC (2008) SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci U S A 105:2907–2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161:851–858

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara K, Jindatip D, Kikuchi M, Yashiro T (2010) In situ hybridization reveals that type I and III collagens are produced by pericytes in the anterior pituitary gland of rats. Cell Tissue Res 342:491–495

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez DM, Medici D (2014) Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 7:re8. https://doi.org/10.1126/scisignal.2005189

    Article  PubMed  PubMed Central  Google Scholar 

  • Gremeaux L, Fu Q, Chen J, Vankelecom H (2012) Activated phenotype of the pituitary stem/progenitor cell compartment during the early-postnatal maturation phase of the gland. Stem Cells Dev 21:801–813

    Article  CAS  PubMed  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    CAS  PubMed  Google Scholar 

  • Hagiwara Y, Ando A, Onoda Y, Matsui H, Chimoto E, Suda H, Itoi E (2010) Expression patterns of collagen types I and III in the capsule of a rat knee contracture model. J Orthop Res 28:315–321

    CAS  PubMed  Google Scholar 

  • Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5:504–514

    Article  CAS  PubMed  Google Scholar 

  • Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Matsumoto H, Koyama C, Shibata K, Nakazato Y, Ito A (1992) Establishment of a folliculo-stellate-like cell line from a murine thyrotropic pituitary tumor. Endocrinology 131:3110–3116

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Mogi C, Ogawa S, Tomida M, Miyai S (2002) Are folliculo-stellate cells in the anterior pituitary gland supportive cells or organ-specific stem cells? Arch Physiol Biochem 110:50–53

    Article  CAS  PubMed  Google Scholar 

  • Itakura E, Odaira K, Yokoyama K, Osuna M, Hara T, Inoue K (2007) Generation of transgenic rats expressing green fluorescent protein in S-100beta-producing pituitary folliculo-stellate cells and brain astrocytes. Endocrinology 148:1518–1523

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson L, van Meeteren LA (2013) Transforming growth factor β family members in regulation of vascular function: in the light of vascular conditional knockouts. Exp Cell Res 319:1264–1270

    Article  CAS  PubMed  Google Scholar 

  • Järvinen PM, Laiho M (2012) LIM-domain proteins in transforming growth factor β-induced epithelial-to-mesenchymal transition and myofibroblast differentiation. Cell Signal 24:819–825

    Article  PubMed  Google Scholar 

  • Jovanović B, Beeler JS, Pickup MW, Chytil A, Gorska AE, Ashby WJ, Lehmann BD, Zijlstra A, Pietenpol J a, Moses HL (2014) Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer. Breast Cancer Res 16:R69

    Article  PubMed  PubMed Central  Google Scholar 

  • Karow M, Sánchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascón S, Khan MA, Lie DC, Dellavalle A, Cossu G, Goldbrunner R, Götz M, Berninger B (2012) Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 11:471–476

    Article  CAS  PubMed  Google Scholar 

  • Kelberman D, Rizzoti K, Lovell-Badge R, Robinson ICAF, Dattani MT (2009) Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 30:790–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krylyshkina O, Chen J, Mebis L, Denef C, Vankelecom H (2005) Nestin-immunoreactive cells in rat pituitary are neither hormonal nor typical folliculo-stellate cells. Endocrinology 146:2376–2387

    Article  CAS  PubMed  Google Scholar 

  • Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Article  CAS  PubMed  Google Scholar 

  • López-Casillas F, Wrana JL, Massagué J (1993) Betaglycan presents ligand to the TGF beta signaling receptor. Cell 73:1435–1444

    Article  PubMed  Google Scholar 

  • Meng X, Ezzati P, Wilkins JA (2011) Requirement of podocalyxin in TGF-beta induced epithelial mesenchymal transition. PLoS ONE 6:1–10

    Google Scholar 

  • Mitchell TS, Bradley J, Robinson GS, Shima DT, Ng YS (2008) RGS5 expression is a quantitative measure of pericyte coverage of blood vessels. Angiogenesis 11:141–151

    Article  CAS  PubMed  Google Scholar 

  • Mitsuishi H, Kato T, Chen M, Cai L-Y, Yako H, Higuchi M, Yoshida S, Kanno N, Ueharu H, Kato Y (2013) Characterization of a pituitary-tumor-derived cell line, TtT/GF, that expresses Hoechst efflux ABC transporter subfamily G2 and stem cell antigen 1. Cell Tissue Res 354:563–572

    Article  CAS  PubMed  Google Scholar 

  • Narimatsu M, Samavarchi-Tehrani P, Varelas X, Wrana JL (2015) Distinct polarity cues direct Taz/yap and TGFβ receptor localization to differentially control TGFβ-induced Smad signaling. Dev Cell 32:652–656

    Article  CAS  PubMed  Google Scholar 

  • Ozone C, Suga H, Eiraku M, Kadoshima T, Yonemura S, Takata N, Oiso Y, Tsuji T, Sasai Y (2016) Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat Commun 7:10351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renner U, Gloddek J, Arzt E, Inoue K, Stalla GK (1997) Interleukin-6 is an autocrine growth factor for folliculostellate-like TtT/GF mouse pituitary tumor cells. Exp Clin Endocrinol Diabetes 105:345–352

    Article  CAS  PubMed  Google Scholar 

  • Renner U, Lohrer P, Schaaf L, Feirer M, Schmitt K, Onofri C, Arzt E, Stalla GK (2002) Transforming growth factor-beta stimulates vascular endothelial growth factor production by folliculostellate pituitary cells. Endocrinology 143:3759–3765

    Article  CAS  PubMed  Google Scholar 

  • Riedl E, Stöckl J, Majdic O, Scheinecker C, Rappersberger K, Knapp W, Strobl H (2000) Functional involvement of E-cadherin in TGF-beta 1-induced cell cluster formation of in vitro developing human Langerhans-type dendritic cells. J Immunol 165:1381–1386

    Article  CAS  PubMed  Google Scholar 

  • Rizzoti K (2015) Genetic regulation of murine pituitary development. J Mol Endocrinol 54:R55–R73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzoti K, Akiyama H, Lovell-Badge R (2013) Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand. Cell Stem Cell 13:419–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stilling GA, Bayliss JM, Jin L, Zhang H, Lloyd RV (2005) Chromogranin a transcription and gene expression in Folliculostellate (TtT/GF) cells inhibit cell growth. Endocr Pathol 16:173–186

    Article  CAS  PubMed  Google Scholar 

  • Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, Takata N, Wataya T, Muguruma K, Miyoshi H, Yonemura S, Oiso Y, Sasai Y (2011) Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480:57–62

    Article  CAS  PubMed  Google Scholar 

  • Susa T, Kato T, Yoshida S, Yako H, Higuchi M, Kato Y (2012) Paired-related homeodomain proteins Prx1 and Prx2 are expressed in embryonic pituitary stem/progenitor cells and may be involved in the early stage of pituitary differentiation. J Neuroendocrinol 24:1201–1212

    Article  CAS  PubMed  Google Scholar 

  • Syaidah R, Tsukada T, Azuma M, Horiguchi K, Fujiwara K, Kikuchi M, Yashiro T (2016) Fibromodulin expression in Folliculostellate cells and Pericytes is promoted by TGFβ Signaling in rat anterior pituitary gland. Acta Histochem Cytochem 49:171–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Thanabalasundaram G, Schneidewind J, Pieper C, Galla HJ (2011) The impact of pericytes on the blood-brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol 43:1284–1293

    Article  CAS  PubMed  Google Scholar 

  • Tierney T, Christian HC, Morris JF, Solito E, Buckingham JC (2003) Evidence from studies on co-cultures of TtT/GF and AtT20 cells that Annexin 1 acts as a paracrine or juxtacrine mediator of the early inhibitory effects of glucocorticoids on ACTH release. J Neuroendocrinol 15:1134–1143

    Article  CAS  PubMed  Google Scholar 

  • Tofrizal A, Fujiwara K, Yashiro T, Yamada S (2016) Alterations of collagen-producing cells in human pituitary adenomas. Med Mol Morphol 49:224–232

  • Tsukada T, Azuma M, Horiguchi K, Fujiwara K, Kouki T, Kikuchi M, Yashiro T (2016) Folliculostellate cell interacts with pericyte via TGFβ2 in rat anterior pituitary. J Endocrinol 229:159–170

    Article  CAS  PubMed  Google Scholar 

  • Ueharu H, Yoshida S, Kikkawa T, Kanno N, Higuchi M, Kato T, Osumi N, Kato Y (2016) Gene tracing analysis reveals the contribution of neural crest-derived cells in pituitary development. J Anat 230:373–380

    Article  PubMed  PubMed Central  Google Scholar 

  • Vankelecom H (2007) Non-hormonal cell types in the pituitary candidating for stem cell. Semin Cell Dev Biol 18:559–570

    Article  CAS  PubMed  Google Scholar 

  • Vitale ML, Barry A (2015) Biphasic effect of basic fibroblast growth factor on anterior pituitary Folliculostellate TtT/GF cell coupling, and Connexin 43 expression and Phosphorylation. J Neuroendocrinol 27:787–801

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Higuchi M, Ueharu H, Nishimura N, Tsuda M, Yako H, Chen M, Mitsuishi H, Sano Y, Kato T, Kato Y (2014) Characterization of murine pituitary-derived cell lines Tpit/F1, Tpit/E and TtT/GF. J Reprod Dev 60:295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Nishimura N, Ueharu H, Kanno N, Higuchi M, Horiguchi K, Kato T, Kato Y (2016) Isolation of adult pituitary stem/progenitor cell clusters located in the parenchyma of the rat anterior lobe. Stem Cell Res 17:318–329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank Editage (www.editage.jp) for English language editing.

Funding

This work was partially supported by Japan Society for the Promotion of Science KAKENHI Grants (Numbers 16 K18818 to SY, 26,460,281 to KF, 16 K08475 to KH, 26,292,166 to YK and 15 K07771 to TK), a MEXT-supported Program for the Strategic Research Foundation at Private Universities, 2014–2018, by the Meiji University International Institute for BioResource Research (MUIIR) and start-up funds to TT from the Faculty of Science Department at Toho University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takehiro Tsukada or Yukio Kato.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Electronic supplementary material

Supplementary Fig. 1

The effect of TGFβ1 and TGFβ3 on Smad2 nuclear translocation was equivalent to that of TGFβ2. TtT/GF cells were cultured for 3 days and then treated with TGFβ1–3, and a TGFβ receptor inhibitor (SB431542) for 30 min at the indicated concentrations. Treated cells were stained for SMAD2 (ag). Right panels show merged images (a’g’; SMAD2: green, DAPI: blue). Similar to TGFβ2 (c, c’), TGFβ1 and TGFβ3 induced Smad2 nuclear translocation (b, b′ and d, d′, respectively). TGFβ-induced SMAD2 nuclear translocation was completely blocked by 10 μM SB431542 (eg and e’g’). Bar = 100 μm (JPEG 829 kb)

High Resolution Image (EPS 17871 kb)

Supplementary Fig. 2

TGFβ2 promotes VEGF expression in TtT/GF cells. TtT/GF cells were treated with TGFβ2 (10 ng/mL) and/or a selective TGFβ receptor I inhibitor (SB431542; 10 μM) for 3 days, and Vegf mRNA expression was determined by quantitative real-time PCR (n = 4, mean ± SEM). mRNA copy numbers were normalized to those of TATA-binding protein (Tbp) mRNA concentrations. TGFβ2 significantly increased Vegf expression, which was completely blocked by co-administration of SB431542. ***, ****p < 0.001, 0.0001, respectively (Tukey’s test) (JPEG 70 kb)

High Resolution Image (EPS 567 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukada, T., Yoshida, S., Kito, K. et al. TGFβ signaling reinforces pericyte properties of the non-endocrine mouse pituitary cell line TtT/GF. Cell Tissue Res 371, 339–350 (2018). https://doi.org/10.1007/s00441-017-2758-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2758-x

Keywords

Navigation