Skip to main content
Log in

RGS5 expression is a quantitative measure of pericyte coverage of blood vessels

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Pericytes play a key role in the process of vascular maturation and stabilization however, the current methods for quantifying pericyte coverage of the neovasculature are laborious and subjective in nature. In this study, we have developed an objective, sensitive, and high-throughput method for quantifying pericyte coverage of angiogenic vessels by analyzing the expression of the pericyte-specific gene, the regulator of G-protein signaling 5 (RGS5). We determined that RGS5 expression was up-regulated during a defined developmental time period in which nascent vessel sprouts acquired a pericyte covering. Furthermore, RGS5 expression was dramatically reduced in vessels with poor pericyte coverage compared to normal angiogenic vasculature. Finally, we determined that the susceptibility of nascent vessels to regression by vascular endothelial growth factor (VEGF) inhibition was significantly reduced following RGS5 up-regulation, further implicating RGS5 in pericyte-endothelial cell interactions and the vascular maturation process. These studies establish the use of RGS5 gene expression as a quantitative and robust measure of pericyte coverage of neovasculature. This method provides a tool for vascular biologists studying pericyte-endothelial cell interactions and vascular maturation in both normal and pathological conditions, such as diabetic retinopathy and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

nRGS5:

PECAM1-Normalized Regulator of G-protein signaling 5

PDGF-B:

Platelet-derived growth factor-B

PDGFRβ:

Platelet-derived growth factor receptor β

RGS5:

Regulator of G-protein signaling 5

SMA:

Smooth muscle actin

VEGF:

Vascular endothelial growth factor, vascular permeability factor

References

  1. Gerhardt H, Betsholtz C (2003) Endothelial–pericyte interactions in angiogenesis. Cell Tissue Res 314(1):15–23

    Article  PubMed  Google Scholar 

  2. Alon T, Hemo I et al (1995) Vascular endothelial growth-factor acts as a survival factor for newly formed retinal-vessels and has implications for retinopathy of prematurity. Nat Med 1(10):1024–1028

    Article  PubMed  CAS  Google Scholar 

  3. Benjamin LE, Golijanin D et al (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103(2):159–165

    Article  PubMed  CAS  Google Scholar 

  4. Benjamin LE, Hemo I et al (1998) A plasticity window for blood vessel remodeling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125(9):1591–1598

    PubMed  CAS  Google Scholar 

  5. Darland DC, D’Amore PA (1999) Blood vessel maturation: vascular development comes of age. J Clin Invest 103(2):157–158

    Article  PubMed  CAS  Google Scholar 

  6. Baluk P, Morikawa S et al (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163(5):1801–1815

    PubMed  Google Scholar 

  7. Morikawa S, Baluk P et al (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160(3):985–1000

    PubMed  Google Scholar 

  8. Nehls V, Drenckhahn D (1991) Heterogeneity of microvascular pericytes for smooth-muscle type alpha-actin. J Cell Biol 113(1):147–154

    Article  PubMed  CAS  Google Scholar 

  9. Ozerdem U, Grako KA et al (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222(2):218–227

    Article  PubMed  CAS  Google Scholar 

  10. Nehls V, Denzer K et al (1992) Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res 270(3):469–474

    Article  PubMed  CAS  Google Scholar 

  11. Berger M, Bergers G et al (2005) Regulator of G-protein signaling-5 induction in pericytes coincides with active vessel remodeling during neovascularization. Blood 105(3):1094–1101

    Article  PubMed  CAS  Google Scholar 

  12. Cho H, Kozasa T et al (2003) Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. FASEB J 17(1):440–442

    PubMed  CAS  Google Scholar 

  13. Lindahl P, Johansson BR et al (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245

    Article  PubMed  CAS  Google Scholar 

  14. Goodwin A. M. a. P. A. D. A. (2008) Vessel maturation and perivascular cells. Tumor Angiogenesis: Mechanisms and Cancer Therapy. N. a. D. M. Fusenig, Springer (in press)

  15. Bondjers C, Kalen M et al (2003) Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am J Pathol 162(3):721–729

    PubMed  CAS  Google Scholar 

  16. Chen X, Higgins J et al (2004) Novel endothelial cell markers in hepatocellular carcinoma. Mod Pathol 17(10):1198–1210

    Article  PubMed  CAS  Google Scholar 

  17. Furuya M, Nishiyama M et al (2004) Expression of regulator of G protein signaling protein 5 (RGS5) in the tumour vasculature of human renal cell carcinoma. J Pathol 203(1):551–558

    Article  PubMed  CAS  Google Scholar 

  18. Paik JH, Skoura A et al (2004) Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes Dev 18(19):2392–2403

    Article  PubMed  CAS  Google Scholar 

  19. Hobson JP, Rosenfeldt HM et al (2001) Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science 291(5509):1800–1803

    Article  PubMed  CAS  Google Scholar 

  20. Rosenfeldt HM, Hobson JP et al (2001) EDG-1 links the PDGF receptor to Src and focal adhesion kinase activation leading to lamellipodia formation and cell migration. FASEB J 15(14):2649–2659

    Article  PubMed  CAS  Google Scholar 

  21. Rosenfeldt HM, Hobson JP et al (2001) The sphingosine-I-phosphate receptor EDG-I is essential for platelet-derived growth factor-induced cell motility. Biochem Soc Trans 29:836–839

    Article  PubMed  CAS  Google Scholar 

  22. Abramsson A, Lindblom P et al (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112(8):1142–1151

    PubMed  CAS  Google Scholar 

  23. Armulik A, Abramsson A et al (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523

    Article  PubMed  CAS  Google Scholar 

  24. Heldin CH, Eriksson U et al (2002) New members of the platelet-derived growth factor family of mitogens. Arch Biochem Biophys 398(2):284–290

    Article  PubMed  CAS  Google Scholar 

  25. Hellstrom M, Kalen M et al (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14):3047–3055

    PubMed  CAS  Google Scholar 

  26. Hirschi KK, Rohovsky SA et al (1998) PDGF, TGF-beta, and heterotypic cell–cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141(3):805–814

    Article  PubMed  CAS  Google Scholar 

  27. Bjarnegard M, Enge M et al (2004) Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 131(8):1847–1857

    Article  PubMed  CAS  Google Scholar 

  28. Jo N, Mailhos C et al (2006) Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am J Pathol 168(6):2036–2053

    Article  PubMed  CAS  Google Scholar 

  29. Bergers G, Song S et al (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111(9):1287–1295

    PubMed  CAS  Google Scholar 

  30. Green LS, Jellinek D et al (1996) Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35(45):14413–14424

    Article  PubMed  CAS  Google Scholar 

  31. Ruckman J, Green LS, Beeson J et al (1998) 2’-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF-165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273:20556–20567

    Article  PubMed  CAS  Google Scholar 

  32. Fruttiger M (2007) Development of the retinal vasculature. Angiogenesis 10:77–88

    Article  PubMed  Google Scholar 

  33. Uemura AK, Kusuhara S et al (2006) Angiogenesis in the mouse retina: a model system for experimental manipulation. Exp Cell Res 312(5):676–683

    Article  PubMed  CAS  Google Scholar 

  34. Ishida S, Usui T et al (2003) VEGF(164)-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J Exp Med 198(3):483–489

    Article  PubMed  CAS  Google Scholar 

  35. Usui T, Isbida S et al (2004) VEGF(164(165)) as the pathological isoform: differential leukocyte and endothelial responses through VEGFR1 and VEGFR2. Invest Ophthalmol Vis Sci 45(2):368–374

    Article  PubMed  Google Scholar 

  36. von Tell D, Armulik A et al (2006) Pericytes and vascular stability. Exp Cell Res 312(5):623–629

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Elise Daly, Andrea DeErkenez, Sofia Ioannidou, Meihua Ju, Dominik Krilleke, Carolina Mailhos, and Vladimir Mastyugin for helpful discussions. The authors thank Omar DelGado and Meihua Ju for assistance with CoNV model generation and Laurette Burgess, Eva Skokanova, and Hongfeng Ma for exceptional animal care and assistance with tissue harvesting. Lastly, the authors thank Lori Mullin and Michael Gee for Taqman support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, T.S., Bradley, J., Robinson, G.S. et al. RGS5 expression is a quantitative measure of pericyte coverage of blood vessels. Angiogenesis 11, 141–151 (2008). https://doi.org/10.1007/s10456-007-9085-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-007-9085-x

Keywords

Navigation