Skip to main content

Advertisement

Log in

Rho GTPases in the regulation of pulmonary vascular barrier function

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Pulmonary endothelial permeability is an important determinant of vascular adaptation to changes in oxygen tension, blood pressure, levels of growth factors or inflammatory cytokines. The Ras homologous (Rho) family of guanosine triphosphate phosphatases (Rho GTPases), key regulators of the actin cytoskeleton, regulate endothelial barrier function in response to a variety of environmental factors and signalling agents via the reorganization of the actin cytoskeleton, changes in receptor trafficking or the phosphorylation of junctional proteins. This review provides a brief summary of recent knowledge on Rho-GTPase-mediated effects on pulmonary endothelial barrier function and focuses in particular on their role in pulmonary vascular disorders, including pulmonary hypertension, chronic obstructive pulmonary disease, acute lung injury and acute respiratory distress syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADMA:

Asymmetric dimethylarginine

AJ:

Adherens junction

ALI:

Acute lung injury

ARDS:

Acute respiratory distress syndrome

Cx:

Connexin

DDAH:

Dimethylarginine dimethylhydrolase

eNOS:

Endothelial nitric oxide synthase

ET-1:

Endothelin-1

GAPs:

GTPase-activating proteins

GEFs:

Guanine nucleotide exchange factors

GDIs:

Guanine nucleotide dissociation inhibitors

GDP:

Guanosine diphosphate

GJ:

Gap junction

GTP:

Guanosine triphosphate

GTPase:

GTP phosphatase

HGF:

Hepatocyte growth factor

HIF1α:

Hypoxia inducible factor 1 alpha

HPAECs:

Human pulmonary artery endothelial cells

LPS:

Lipopolysaccharide

MLC20 :

Myosin light chain 20

MLCK:

Myosin light chain kinase

NADPH:

Nicotinamide adenine dinucleotide phosphate

NO:

Nitric oxide

OxPAPC:

Oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphatidylcholine

PAECs:

Pulmonary artery endothelial cells

PAH:

Pulmonary arterial hypertension

PAK:

p21-activated protein kinase

PH:

Pulmonary hypertension

PKC:

Protein kinase C

PKG:

Protein kinase G

Rho:

Ras homologous

ROCK:

Rho kinase

ROS:

Reactive oxygen species

S1P:

Sphingosine-1 phosphate

TJ:

Tight junction

TNF-α:

Tumour necrosis factor alpha

VASP:

Vasodilator-stimulated phosphoprotein

VE-cadherin:

Vascular endothelial cadherin

VEGF:

Vascular endothelial growth factor

ZO-1:

Zonula occludens protein 1

References

  • Aaronson PI, Robertson TP, Knock GA, Becker S, Lewis TH, Snetkov V, Ward JP (2006) Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol (Lond) 570:53–58

    Article  CAS  Google Scholar 

  • Abbasi T, Garcia JG (2013) Sphingolipids in lung endothelial biology and regulation of vascular integrity. Handb Exp Pharmacol 2013:201–226

    Article  CAS  Google Scholar 

  • Aghajanian A, Wittchen ES, Campbell SL, Burridge K (2009) Direct activation of RhoA by reactive oxygen species requires a redox-sensitive motif. PLoS ONE 4:e8045

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Archer SL, Weir EK, Wilkins MR (2010) Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 121:2045–2066

    Article  PubMed Central  PubMed  Google Scholar 

  • Arrigoni FI, Vallance P, Haworth SG, Leiper JM (2003) Metabolism of asymmetric dimethylarginines is regulated in the lung developmentally and with pulmonary hypertension induced by hypobaric hypoxia. Circulation 107:1195–1201

    Article  PubMed  CAS  Google Scholar 

  • Bates DO (2010) Vascular endothelial growth factors and vascular permeability. Cardiovasc Res 87:262–271

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901

    Article  PubMed  CAS  Google Scholar 

  • Beckers CM, van Hinsbergh VW, van Nieuw Amerongen GP (2010) Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb Haemost 103:40–55

    Article  PubMed  CAS  Google Scholar 

  • Birukov KG (2009) Small GTPases in mechanosensitive regulation of endothelial barrier. Microvasc Res 77:46–52

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Birukov KG, Birukova AA, Dudek SM, Verin AD, Crow MT, Zhan X, DePaola N, Garcia JG (2002) Shear stress-mediated cytoskeletal remodeling and cortactin translocation in pulmonary endothelial cells. Am J Respir Cell Mol Biol 26:453–464

    Article  PubMed  CAS  Google Scholar 

  • Birukova AA, Smurova K, Birukov KG, Kaibuchi K, Garcia JG, Verin AD (2004) Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunction. Microvasc Res 67:64–77

    Article  PubMed  CAS  Google Scholar 

  • Birukova AA, Chatchavalvanich S, Rios A, Kawkitinarong K, Garcia JG, Birukov KG (2006) Differential regulation of pulmonary endothelial monolayer integrity by varying degrees of cyclic stretch. Am J Pathol 168:1749–1761

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Birukova AA, Malyukova I, Poroyko V, Birukov KG (2007a) Paxillin-beta-catenin interactions are involved in Rac/Cdc42-mediated endothelial barrier-protective response to oxidized phospholipids. Am J Physiol Lung Cell Mol Physiol 293:L199–L211

    Article  PubMed  CAS  Google Scholar 

  • Birukova AA, Zagranichnaya T, Fu P, Alekseeva E, Chen W, Jacobson JR, Birukov KG (2007b) Prostaglandins PGE(2) and PGI(2) promote endothelial barrier enhancement via PKA- and Epac1/Rap1-dependent Rac activation. Exp Cell Res 313:2504–2520

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Birukova AA, Moldobaeva N, Xing J, Birukov KG (2008) Magnitude-dependent effects of cyclic stretch on HGF- and VEGF-induced pulmonary endothelial remodeling and barrier regulation. Am J Physiol Lung Cell Mol Physiol 295:L612–L623

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Birukova AA, Burdette D, Moldobaeva N, Xing J, Fu P, Birukov KG (2010) Rac GTPase is a hub for protein kinase A and Epac signaling in endothelial barrier protection by cAMP. Microvasc Res 79:128–138

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Birukova AA, Zebda N, Fu P, Poroyko V, Cokic I, Birukov KG (2011) Association between adherens junctions and tight junctions via Rap1 promotes barrier protective effects of oxidized phospholipids. J Cell Physiol 226:2052–2062

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Birukova AA, Lee S, Starosta V, Wu T, Ho T, Kim J, Berliner JA, Birukov KG (2012a) A role for VEGFR2 activation in endothelial responses caused by barrier disruptive OxPAPC concentrations. PLoS One 7:e30957

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Birukova AA, Tian Y, Meliton A, Leff A, Wu T, Birukov KG (2012b) Stimulation of Rho signaling by pathologic mechanical stretch is a “second hit” to Rho-independent lung injury induced by IL-6. Am J Physiol Lung Cell Mol Physiol 302:L965–L975

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bokoch GM (2003) Biology of the p21-activated kinases. Annu Rev Biochem 72:743–781

    Article  PubMed  CAS  Google Scholar 

  • Broughton BR, Jernigan NL, Norton CE, Walker BR, Resta TC (2010) Chronic hypoxia augments depolarization-induced Ca2+ sensitization in pulmonary vascular smooth muscle through superoxide-dependent stimulation of RhoA. Am J Physiol Lung Cell Mol Physiol 298:L232–L242

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bryan BA, D’Amore PA (2007) What tangled webs they weave: Rho-GTPase control of angiogenesis. Cell Mol Life Sci 64:2053–2065

    Article  PubMed  CAS  Google Scholar 

  • Budhiraja R, Tuder RM, Hassoun PM (2004) Endothelial dysfunction in pulmonary hypertension. Circulation 109:159–165

    Article  PubMed  Google Scholar 

  • Burton VJ, Ciuclan LI, Holmes AM, Rodman DM, Walker C, Budd DC (2011) Bone morphogenetic protein receptor II regulates pulmonary artery endothelial cell barrier function. Blood 117:333–341

    Article  PubMed  CAS  Google Scholar 

  • Chi AY, Waypa GB, Mungai PT, Schumacker PT (2010) Prolonged hypoxia increases ROS signaling and RhoA activation in pulmonary artery smooth muscle and endothelial cells. Antioxid Redox Signal 12:603–610

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cinel I, Ark M, Dellinger P, Karabacak T, Tamer L, Cinel L, Michael P, Hussein S, Parrillo JE, Kumar A (2012) Involvement of Rho kinase (ROCK) in sepsis-induced acute lung injury. J Thorac Dis 4:30–39

    PubMed Central  PubMed  Google Scholar 

  • Comerford KM, Lawrence DW, Synnestvedt K, Levi BP, Colgan SP (2002) Role of vasodilator-stimulated phosphoprotein in PKA-induced changes in endothelial junctional permeability. FASEB J 16:583–585

    PubMed  CAS  Google Scholar 

  • Connolly MJ, Aaronson PI (2011) Key role of the RhoA/Rho kinase system in pulmonary hypertension. Pulm Pharmacol Ther 24:1–14

    Article  PubMed  CAS  Google Scholar 

  • Conway AM, James AB, O’Kane EM, Rakhit S, Morris BJ (2004) Regulation of myosin light chain phosphorylation by RhoB in neuronal cells. Exp Cell Res 300:35–42

    Article  PubMed  CAS  Google Scholar 

  • Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16:209–221

    Article  PubMed  CAS  Google Scholar 

  • Derangeon M, Spray DC, Bourmeyster N, Sarrouilhe D, Hervé JC (2009) Reciprocal influence of connexins and apical junction proteins on their expressions and functions. Biochim Biophys Acta 1788:768–778

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dudek SM, Jacobson JR, Chiang ET, Birukov KG, Wang P, Zhan X, Garcia JG (2004) Pulmonary endothelial cell barrier enhancement by sphingosine 1-phosphate: roles for cortactin and myosin light chain kinase. J Biol Chem 279:24692–24700

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Borja M, Janssen L, Verwoerd D, Hordijk P, Neefjes J (2005) RhoB regulates endosome transport by promoting actin assembly on endosomal membranes through Dia1. J Cell Sci 118:2661–2670

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto Y, Shimokawa H (2011) Recent progress in the management of pulmonary hypertension. Circ J 75:1801–1810

    Article  PubMed  Google Scholar 

  • Furman C, Sieminski AL, Kwiatkowski AV, Rubinson DA, Vasile E, Bronson RT, Fässler R, Gertler FB (2007) Ena/VASP is required for endothelial barrier function in vivo. J Cell Biol 179:761–775

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gao J, Liao J, Yang GY (2009) CAAX-box protein, prenylation process and carcinogenesis. Am J Transl Res 3:312–325

    Google Scholar 

  • Garcia JG, Liu F, Verin AD, Birukova A, Dechert MA, Gerthoffer WT, Bamberg JR, English D (2001) Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement. J Clin Invest 108:689–701

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8:1223–1234

    Article  PubMed  CAS  Google Scholar 

  • Gorbunov NV, Atkins JL, Gurusamy N, Pitt BR (2012) Iron-induced remodeling in cultured rat pulmonary artery endothelial cells. Biometals 25:203–217

    Article  PubMed  CAS  Google Scholar 

  • Gorovoy M, Neamu R, Niu J, Vogel S, Predescu D, Miyoshi J, Takai Y, Kini V, Mehta D, Malik AB, Voyno-Yasenetskaya T (2007) RhoGDI-1 modulation of the activity of monomeric RhoGTPase RhoA regulates endothelial barrier function in mouse lungs. Circ Res 101:50–58

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  • Hall A, Lalli G (2010) Rho and Ras GTPases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2:a001818

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Heo J, Raines KW, Mocanu V, Campbell SL (2006) Redox regulation of RhoA. Biochemistry 45:14481–14489

    Article  PubMed  CAS  Google Scholar 

  • Hirota K, Semenza GL (2001) Rac1 activity is required for the activation of hypoxia-inducible factor 1. J Biol Chem 276:21166–21172

    Article  PubMed  CAS  Google Scholar 

  • Hordijk PL (2006) Regulation of NADPH oxidases: the role of Rac proteins. Circ Res 98:453–462

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Duhadaway JB, Prendergast GC, Laury-Kleintop LD (2007) RhoB regulates PDGFR-beta trafficking and signaling in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 27:2597–2605

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck SC, Roggenkamp D, May M, Huelsenbeck J, Brakebusch C, Rottner K, Ladwein M, Just I, Fritz G, Schmidt G, Genth H (2013) Expression and cytoprotective activity of the small GTPase RhoB induced by the Escherichia coli cytotoxic necrotizing factor 1. Int J Biochem Cell Biol 45:1767–1775

    Article  PubMed  CAS  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    Article  PubMed  CAS  Google Scholar 

  • Kajimoto H, Hashimoto K, Bonnet SN, Haromy A, Harry G, Moudgil R, Nakanishi T, Rebeyka I, Thébaud B, Michelakis ED, Archer SL (2007) Oxygen activates the Rho/Rho-kinase pathway and induces RhoB and ROCK-1 expression in human and rabbit ductus arteriosus by increasing mitochondria-derived reactive oxygen species: a newly recognized mechanism for sustaining ductal constriction. Circulation 115:1777–1788

    Article  PubMed  CAS  Google Scholar 

  • Knock GA, Shaifta Y, Snetkov VA, Vowles B, Drndarski S, Ward JP, Aaronson PI (2008) Interaction between src family kinases and rho-kinase in agonist-induced Ca2+−sensitization of rat pulmonary artery. Cardiovasc Res 77:570–579

    Article  PubMed  CAS  Google Scholar 

  • Kouklis P, Konstantoulaki M, Vogel S, Broman M, Malik AB (2004) Cdc42 regulates the restoration of endothelial barrier function. Circ Res 94:159–166

    Article  PubMed  CAS  Google Scholar 

  • Krause M, Dent EW, Bear JE, Loureiro JJ, Gertler FB (2003) Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 19:541–564

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Shen Q, Pivetti CD, Lee ES, Wu MH, Yuan SY (2009) Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. Expert Rev Mol Med 11:e19

    Article  PubMed Central  PubMed  Google Scholar 

  • Lang P, Gesbert F, Delespine-Carmagnat M, Stancou R, Pouchelet M, Bertoglio J (1996) Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO J 15:510–519

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lu Q, Sakhatskyy P, Grinnell K, Newton J, Ortiz M, Wang Y, Sanchez-Esteban J, Harrington EO, Rounds S (2011) Cigarette smoke causes lung vascular barrier dysfunction via oxidative stress-mediated inhibition of RhoA and focal adhesion kinase. Am J Physiol Lung Cell Mol Physiol 301:L847–L857

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lu Q, Newton J, Hsiao V, Shamirian P, Blackburn MR, Pedroza M (2012) Sustained adenosine exposure causes lung endothelial barrier dysfunction via nucleoside transporter-mediated signaling. Am J Respir Cell Mol Biol 47:604–613

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ma Z, Li J, Yang L, Mu Y, Xie W, Pitt B, Li S (2004) Inhibition of LPS- and CpG DNA-induced TNF-alpha response by oxidized phospholipids. Am J Physiol Lung Cell Mol Physiol 286:L808–L816

    Article  PubMed  CAS  Google Scholar 

  • Maniatis NA, Orfanos SE (2008) The endothelium in acute lung injury/acute respiratory distress syndrome. Curr Opin Crit Care 14:22–30

    Article  PubMed  Google Scholar 

  • McVerry BJ, Peng X, Hassoun PM, Sammani S, Simon BA, Garcia JG (2004) Sphingosine 1-phosphate reduces vascular leak in murine and canine models of acute lung injury. Am J Respir Crit Care Med 170:987–993

    Article  PubMed  Google Scholar 

  • Mehta D, Konstantoulaki M, Ahmmed GU, Malik AB (2005) Sphingosine 1-phosphate-induced mobilization of intracellular Ca2+ mediates rac activation and adherens junction assembly in endothelial cells. J Biol Chem 280:17320–17328

    Article  PubMed  CAS  Google Scholar 

  • Milara J, Ortiz JL, Juan G, Guijarro R, Almudever P, Martorell M, Morcillo EJ, Cortijo J (2010) Cigarette smoke exposure up-regulates endothelin receptor B in human pulmonary artery endothelial cells: molecular and functional consequences. Br J Pharmacol 161:1599–1615

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Millatt LJ, Whitley GS, Li D, Leiper JM, Siragy HM, Carey RM, Johns RA (2003) Evidence for dysregulation of dimethylarginine dimethylaminohydrolase I in chronic hypoxia-induced pulmonary hypertension. Circulation 108:1493–1498

    Article  PubMed  CAS  Google Scholar 

  • Munder A, Zelmer A, Schmiedl A, Dittmar KE, Rohde M, Dorsch M, Otto K, Hedrich HJ, Tümmler B, Weiss S, Tschernig T (2005) Murine pulmonary infection with Listeria monocytogenes: differential susceptibility of BALB/c, C57BL/6 and DBA/2 mice. Microbes Infect 7:600–611

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa K, Chiba H, Fujita H, Kojima T, Saito T, Endo T, Sawada N (2006) Possible involvement of gap junctions in the barrier function of tight junctions of brain and lung endothelial cells. J Cell Physiol 208:123–132

    Article  PubMed  CAS  Google Scholar 

  • Nonas S, Miller I, Kawkitinarong K, Chatchavalvanich S, Gorshkova I, Bochkov VN, Leitinger N, Natarajan V, Garcia JG, Birukov KG (2006) Oxidized phospholipids reduce vascular leak and inflammation in rat model of acute lung injury. Am J Respir Crit Care Med 173:1130–1138

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nonas S, Birukova AA, Fu P, Xing J, Chatchavalvanich S, Bochkov VN, Leitinger N, Garcia JG, Birukov KG (2008) Oxidized phospholipids reduce ventilator-induced vascular leak and inflammation in vivo. Crit Care 12:R27

    Article  PubMed Central  PubMed  Google Scholar 

  • Parthasarathi K, Quadri SK (2009) Cadherins and connexins in pulmonary endothelial function. In: Voelkel NF, Rounds S (eds) The pulmonary endothelium: function in health and disease. Wiley, Chichester, pp 33–50

    Chapter  Google Scholar 

  • Parthasarathi K, Ichimura H, Monma E, Lindert J, Quadri S, Issekutz A, Bhattacharya J (2006) Connexin 43 mediates spread of Ca2+−dependent proinflammatory responses in lung capillaries. J Clin Invest 116:2193–2200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Partovian C, Adnot S, Raffestin B, Louzier V, Levame M, Mavier IM, Lemarchand P, Eddahibi S (2000) Adenovirus-mediated lung vascular endothelial growth factor overexpression protects against hypoxic pulmonary hypertension in rats. Am J Respir Cell Mol Biol 23:762–771

    Article  PubMed  CAS  Google Scholar 

  • Pedersen E, Brakebusch C (2012) Rho GTPase function in development: how in vivo models change our view. Exp Cell Res 318:1779–1787

    Article  PubMed  CAS  Google Scholar 

  • Pullamsetti S, Kiss L, Ghofrani HA, Voswinckel R, Haredza P, Klepetko W, Aigner C, Fink L, Muyal JP, Weissmann N, Grimminger F, Seeger W, Schermuly RT (2005) Increased levels and reduced catabolism of asymmetric and symmetric dimethylarginines in pulmonaryhypertension. FASEB J 19:1175–1177

    PubMed  CAS  Google Scholar 

  • Ramchandran R, Mehta D, Vogel SM, Mirza MK, Kouklis P, Malik AB (2008) Critical role of Cdc42 in mediating endothelial barrier protection in vivo. Am J Physiol Lung Cell Mol Physiol 295:L363–L369

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Repp H, Pamukçi Z, Koschinski A, Domann E, Darji A, Birringer J, Brockmeier D, Chakraborty T, Dreyer F (2002) Listeriolysin of Listeria monocytogenes forms Ca2+−permeable pores leading to intracellular Ca2+ oscillations. Cell Microbiol 4:483–491

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ (2001) Rho GTPases and cell migration. J Cell Sci 114:2713–2722

    PubMed  CAS  Google Scholar 

  • Rodriguez PL, Sahay S, Olabisi OO, Whitehead IP (2007) ROCK I-mediated activation of NF-kappaB by RhoB. Cell Signal 19:2361–2369

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rolli-Derkinderen M, Sauzeau V, Boyer L, Lemichez E, Baron C, Henrion D, Loirand G, Pacaud P (2005) Phosphorylation of serine 188 protects RhoA from ubiquitin/proteasome-mediated degradation in vascular smooth muscle cells. Circ Res 96:1152–1160

    Article  PubMed  CAS  Google Scholar 

  • Rose F, Zeller SA, Chakraborty T, Domann E, Machleidt T, Kronke M, Seeger W, Grimminger F, Sibelius U (2001) Human endothelial cell activation and mediator release in response to Listeria monocytogenes virulence factors. Infect Immun 69:897–905

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sakai H, Fujita A, Watanabe A, Chiba Y, Kamei J, Misawa M (2011) Different effects of smoke from heavy and light cigarettes on the induction of bronchial smooth muscle hyperresponsiveness in rats. J Smooth Muscle Res 47:1–10

    Article  PubMed  Google Scholar 

  • Sauzeau V, Le Jeune H, Cario-Toumaniantz C, Smolenski A, Lohmann SM, Bertoglio J, Chardin P, Pacaud P, Loirand G (2000) Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem 275:21722–21729

    Article  PubMed  CAS  Google Scholar 

  • Sauzeau V, Rolli-Derkinderen M, Marionneau C, Loirand G, Pacaud P (2003) RhoA expression is controlled by nitric oxide through cGMP-dependent protein kinase activation. J Biol Chem 278:9472–9480

    Article  PubMed  CAS  Google Scholar 

  • Sawada N, Salomone S, Kim HH, Kwiatkowski DJ, Liao JK (2008) Regulation of endothelial nitric oxide synthase and postnatal angiogenesis by Rac1. Circ Res 103:360–368

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F (2011) Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol 8:443–455

    Article  PubMed  CAS  Google Scholar 

  • Schlegel N, Burger S, Golenhofen N, Walter U, Drenckhahn D, Waschke J (2008) The role of VASP in regulation of cAMP- and Rac 1-mediated endothelial barrier stabilization. Am J Physiol Cell Physiol 294:C178–C188

    Article  PubMed  CAS  Google Scholar 

  • Seebach J, Mädler HJ, Wojciak-Stothard B, Schnittler HJ (2005) Tyrosine phosphorylation and the small GTPase rac cross-talk in regulation of endothelial barrier function. Thromb Haemost 94:620–629

    PubMed  CAS  Google Scholar 

  • Sen P, Gopalakrishnan R, Kothari H, Keshava S, Clark CA, Esmon CT, Pendurthi UR, Rao LV (2011) Factor VIIa bound to endothelial cell protein C receptor activates protease activated receptor-1 and mediates cell signaling and barrier protection. Blood 117:3199–3208

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shikata Y, Rios A, Kawkitinarong K, DePaola N, Garcia JG, Birukov KG (2005) Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells. Exp Cell Res 304:40–49

    Article  PubMed  CAS  Google Scholar 

  • Skuli N, Monferran S, Delmas C, Lajoie-Mazenc I, Favre G, Toulas C, Cohen-Jonathan-Moyal E (2006) Activation of RhoB by hypoxia controls hypoxia-inducible factor-1alpha stabilization through glycogen synthase kinase-3 in U87 glioblastoma cells. Cancer Res 66:482–489

    Article  PubMed  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358

    PubMed  CAS  Google Scholar 

  • Spindler V, Schlegel N, Waschke J (2010) Role of GTPases in control of microvascular permeability. Cardiovasc Res 87:243–253

    Article  PubMed  CAS  Google Scholar 

  • Stan RV (2009) Anatomy of the pulmonary endothelium. In: Voelkel N, Rounds S (eds) The pulmonary endothelium: function in health and disease. Wiley, Chichester, pp 25–32

    Chapter  Google Scholar 

  • Stockton RA, Schaefer E, Schwartz MA (2004) p21-activated kinase regulates endothelial permeability through modulation of contractility. J Biol Chem 279:46621–46630

    Article  PubMed  CAS  Google Scholar 

  • Stockton R, Reutershan J, Scott D, Sanders J, Ley K, Schwartz MA (2007) Induction of vascular permeability: beta PIX and GIT1 scaffold the activation of extracellular signal-regulated kinase by PAK. Mol Biol Cell 18:2346–2355

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Storck EM, Wojciak-Stothard B (2013) Rho GTPases in pulmonary vascular dysfunction. Vascul Pharmacol 58:202–210

    Article  PubMed  CAS  Google Scholar 

  • Szulcek R, Beckers CM, Hodzic J, de Wit J, Chen Z, Grob T, Musters RJ, Minshall RD, van Hinsbergh VW, van Nieuw Amerongen GP (2013) Localized RhoA GTPase activity regulates dynamics of endothelial monolayer integrity. Cardiovasc Res 99:471–482

    Article  PubMed  CAS  Google Scholar 

  • Takemoto M, Sun J, Hiroki J, Shimokawa H, Liao JK (2002) Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation 106:57–62

    Article  PubMed  CAS  Google Scholar 

  • Tsang H, Leiper J, Lao KH, Dowsett L, Delahaye MW, Barnes G, Wharton J, Howard L, Iannone L, Lang NN, Wilkins MR, Wojciak-Stothard B (2014) Role of asymmetric methylarginine and connexin 43 in the regulation of pulmonary endothelial function. Pulm Circ (in press)

  • Tuder RM, Yun JH (2008) Vascular endothelial growth factor of the lung: friend or foe. Curr Opin Pharmacol 8:255–260

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tuder RM, Kasahara Y, Voelkel NF (2000) Inhibition of vascular endothelial growth factor receptors causes emphysema in rats.Chest 117:281S

    Article  PubMed  Google Scholar 

  • van der Heijden M, van Nieuw Amerongen GP, van Bezu J, Paul MA, Groeneveld AB, van Hinsbergh VW (2011) Opposing effects of the angiopoietins on the thrombin-induced permeability of human pulmonary microvascular endothelial cells. PLoS One 6:e23448

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • van Kempen MJ, Jongsma HJ (1999) Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals. Histochem Cell Biol 112:479–486

    Article  PubMed  Google Scholar 

  • van Nieuw Amerongen GP, Beckers CM, Achekar ID, Zeeman S, Musters RJ, van Hinsbergh VW (2007) Involvement of Rho kinase in endothelial barrier maintenance. Arterioscler Thromb Vasc Biol 27:2332–2339

    Article  PubMed  CAS  Google Scholar 

  • Vardouli L, Vasilaki E, Papadimitriou E, Kardassis D, Stournaras C (2008) A novel mechanism of TGFbeta-induced actin reorganization mediated by Smad proteins and Rho GTPases. FEBS J 275:4074–4087

    Article  PubMed  CAS  Google Scholar 

  • Vasioukhin V, Fuchs E (2001) Actin dynamics and cell-cell adhesion in epithelia. Curr Opin Cell Biol 13:76–84

    Article  PubMed  CAS  Google Scholar 

  • Vega FM, Ridley AJ (2008) Rho GTPases in cancer cell biology. FEBS Lett 582:2093–2101

    Article  PubMed  CAS  Google Scholar 

  • Vouret-Craviari V, Bourcier C, Boulter E, van Obberghen-Schilling E (2002) Distinct signals via Rho GTPases and Src drive shape changes by thrombin and sphingosine-1-phosphate in endothelial cells. J Cell Sci 115:2475–2484

    PubMed  CAS  Google Scholar 

  • Wang L, Dudek SM (2009) Regulation of vascular permeability by sphingosine 1-phosphate. Microvasc Res 77:39–45

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang Z, Jin N, Ganguli S, Swartz DR, Li L, Rhoades RA (2001) Rho-kinase activation is involved in hypoxia-induced pulmonary vasoconstriction. Am J Respir Cell Mol Biol 25:628–635

    Article  PubMed  CAS  Google Scholar 

  • Weis SM (2008) Vascular permeability in cardiovascular disease and cancer. Curr Opin Hematol 15:243–249

    Article  PubMed  CAS  Google Scholar 

  • West JB (2013) Role of the fragility of the pulmonary blood-gas barrier in the evolution of the pulmonary circulation. Am J Physiol Regul Integr Comp Physiol 304:R171–R176

    Article  PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B (2008) New drug targets for pulmonary hypertension: Rho GTPases in pulmonary vascular remodelling. Postgrad Med J 84:348–353

    Article  PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Ridley AJ (2002) Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol 39:187–199

    Article  PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Tsang LY, Haworth SG (2005) Rac and Rho play opposing roles in the regulation of hypoxia/reoxygenation-induced permeability changes in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 288:L749–L760

    Article  PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Tsang LY, Paleolog E, Hall SM, Haworth SG (2006) Rac1 and RhoA as regulators of endothelial phenotype and barrier function in hypoxia-induced neonatal pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 290:L1173–L1182

    Article  PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Torondel B, Tsang LY, Fleming I, Fisslthaler B, Leiper JM, Vallance P (2007) The ADMA/DDAH pathway is a critical regulator of endothelial cell motility. J Cell Sci 120:929–942

    Article  PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Torondel B, Zhao L, Renné T, Leiper JM (2009) Modulation of Rac1 activity by ADMA/DDAH regulates pulmonary endothelial barrier function. Mol Biol Cell 20:33–42

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Zhao L, Oliver E, Dubois O, Wu Y, Kardassis D, Vasilaki E, Huang M, Mitchell JA, Harrington LS, Louise H, Prendergast GC, Wilkins MR (2012) Role of RhoB in the regulation of pulmonary endothelial and smooth muscle cell responses to hypoxia. Circ Res 110:1423–1434

    Article  PubMed  CAS  Google Scholar 

  • Xiong C, Yang G, Kumar S, Aggarwal S, Leustik M, Snead C, Hamacher J, Fischer B, Umapathy NS, Hossain H, Wendel A, Catravas JD, Verin AD, Fulton D, Black SM, Chakraborty T, Lucas R (2010) The lectin-like domain of TNF protects from listeriolysin-induced hyperpermeability in human pulmonary microvascular endothelial cells—a crucial role for protein kinase C-alpha inhibition. Vascul Pharmacol 52:207–213

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao YD, Ohkawara H, Rehman J, Wary KK, Vogel SM, Minshall RD, Zhao YY, Malik AB (2009) Bone marrow progenitor cells induce endothelial adherens junction integrity by sphingosine-1-phosphate-mediated Rac1 and Cdc42 signaling. Circ Res 105:696–704

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Wojciak-Stothard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duluc, L., Wojciak-Stothard, B. Rho GTPases in the regulation of pulmonary vascular barrier function. Cell Tissue Res 355, 675–685 (2014). https://doi.org/10.1007/s00441-014-1805-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1805-0

Keywords

Navigation