Skip to main content
Log in

Plasmodesmata: intercellular tunnels facilitating transport of macromolecules in plants

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In plants, intercellular structures named plasmodesmata (PD) form a continuous cytoplasmic network between neighboring cells. PD pores provide channels for intercellular symplasmic (cell-to-cell) transport throughout most tissues of the plant body. Cell-defining proteins, such as transcription factors, and regulatory non-coding sequences, such as short interfering RNA, micro RNA, protein-encoding messenger RNAs, viroids, and viral RNA/DNA genomes move via PD channels to adjacent cells. PD-mediated intercellular transport of macromolecules is a regulated process depending on the tissue, developmental stage, and nature of the transported macromolecule. In this review, PD channels and their similarity to tunneling nanotubes present in animals are highlighted. In addition, homeodomain protein movement and cellular components regulating transport are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CPC:

CAPRICE

ER:

Endoplasmic reticulum

GFP:

Green fluorescent protein

HD:

Homeodomain protein

KN1:

KNOTTED1

miRNA:

Micro RNA

MP:

Movement protein

MPB2C:

MOVEMENT PROTEIN BINDING PROTEIN 2C

NCAP:

Non-cell autonomous protein

PD:

Plasmodesmata

siRNA:

Small interfering RNA

TMV:

Tobacco mosaic virus

TNTs:

Tunneling nanotubes

TTG1:

TRANSPARENT TESTA GLABRA 1

References

  • Aoki K, Kragler F, Xoconostle-Cazares B, Lucas WJ (2002) A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. Proc Natl Acad Sci USA 99:16342–16347

    Article  PubMed  CAS  Google Scholar 

  • Balkunde R, Pesch M, Hulskamp M (2010) Trichome patterning in Arabidopsis thaliana from genetic to molecular models. Curr Top Dev Biol 91:299–321

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Hlavacka A, Volkmann D, Menzel D (2004) Getting connected: actin-based cell-to-cell channels in plants and animals. Trends Cell Biol 14:404–408

    Article  PubMed  CAS  Google Scholar 

  • Barton DA, Cole L, Collings DA, Liu DY, Smith PM, Day DA, Overall RL (2011) Cell-to-cell transport via the lumen of the endoplasmic reticulum. Plant J 66:806–817

    Article  PubMed  CAS  Google Scholar 

  • Bayer E, Thomas CL, Maule AJ (2004) Plasmodesmata in Arabidopsis thaliana suspension cells. Protoplasma 223:93–102

    Article  PubMed  CAS  Google Scholar 

  • Bellucci M, Roscini C, Mariani A (2003) Cytomixis in pollen mother cells of Medicago sativa L. J Hered 94:512–516

    Article  PubMed  CAS  Google Scholar 

  • Benitez-Alfonso Y, Jackson D (2009) Redox homeostasis regulates plasmodesmal communication in Arabidopsis meristems. Plant Signal Behav 4:655–659

    Article  PubMed  CAS  Google Scholar 

  • Bouyer D, Geier F, Kragler F, Schnittger A, Pesch M, Wester K et al (2008) Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in Arabidopsis trichome formation. PLoS Biol 6:e141

    Article  PubMed  Google Scholar 

  • Boyer JN, South DB (1989) Seasonal changes in intensity of bud dormancy in loblolly pine seedlings. Tree Physiol 5):379–385

    Article  PubMed  Google Scholar 

  • Brunet I, Weinl C, Piper M, Trembleau A, Volovitch M, Harris W, Prochiantz A, Holt C (2005) The transcription factor Engrailed-2 guides retinal axons. Nature 438:94–98

    Article  PubMed  CAS  Google Scholar 

  • Bucher GL, Tarina C, Heinlein M, Di Serio F, Meins F Jr, Iglesias VA (2001) Local expression of enzymatically active class I beta-1, 3-glucanase enhances symptoms of TMV infection in tobacco. Plant J 28:361–369

    Article  PubMed  CAS  Google Scholar 

  • Bukoreshtliev NV, Wang X, Hodneland E, Gurke S, Barroso JF, Gerdes HH (2009) Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett 583:1481–1488

    Article  PubMed  CAS  Google Scholar 

  • Burch-Smith TM, Zambryski PC (2012) Plasmodesmata paradigm shift: regulation from without versus within. Annu Rev Plant Biol 63:239–260

    Article  PubMed  CAS  Google Scholar 

  • Burgess JA (1971) Observations on structure and differentiation in plasmodesmata. Protoplasma 73:83–95

    Article  Google Scholar 

  • Canto T, Palukaitis P (1999) Are tubules generated by the 3a protein necessary for cucumber mosaic virus movement. Mol Plant Microbe Interact 12:985–993

    Article  CAS  Google Scholar 

  • Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J et al (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321

    Article  PubMed  CAS  Google Scholar 

  • Chinnery HR, Pearlman E, McMenamin PG (2008) Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea. J Immunol 180:5779–5783

    PubMed  CAS  Google Scholar 

  • Christensen NM, Faulkner C, Oparka K (2009) Evidence for unidirectional flow through plasmodesmata. Plant Physiol 150:96–104

    Article  PubMed  CAS  Google Scholar 

  • Citovsky V, Knorr D, Schuster G, Zambryski P (1990) The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60:637–647

    Article  PubMed  CAS  Google Scholar 

  • Davis DM, Sowinski S (2008) Membrane nanotubes: dynamic long-distance connections between animal cells. Nature reviews. Mol Cell Biol 9:431–436

    CAS  Google Scholar 

  • Ding B, Haudenshield JS, Hull RJ, Wolf S, Beachy RN, Lucas WJ (1992) Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4:915–928

    PubMed  CAS  Google Scholar 

  • Dunoyer P, Brosnan CA, Schott G, Wang Y, Jay F, Alioua A, Himber C, Voinnet O (2010a) An endogenous, systemic RNAi pathway in plants. EMBO J 29:1699–1712

    Article  PubMed  CAS  Google Scholar 

  • Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carington JC, Voinnet O (2010b) Small RNA duplexes function as mobile silencing signals between plant cells. Science 328:912–916

    Article  PubMed  CAS  Google Scholar 

  • Faulkner C, Akman OE, Bell K, Jeffree C, Oparka K (2008) Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco. Plant Cell 20:1504–1518

    Article  PubMed  CAS  Google Scholar 

  • Fichtenbauer D, Xu XM, Jackson D, Kragler F (2012) The chaperonin CCT8 facilitates spread of tobamovirus infection. Plant Signal Behav 7:318–321

    Article  PubMed  CAS  Google Scholar 

  • Furuta K, Lichtenberger R, Helariutta Y (2012) The role of mobile small RNA species during root growth and development. Curr Opin Cell Biol 24:211–216

    Article  PubMed  CAS  Google Scholar 

  • Gallagher KL, Benfey PN (2009) Both the conserved GRAS domain and nuclear localization are required for SHORT-ROOT movement. Plant J 57:785–797

    Article  PubMed  CAS  Google Scholar 

  • Genoves A, Pallas V, Navarro JA (2011) Contribution of topology determinants of a viral movement protein to its membrane association, intracellular traffic and viral cell-to-cell movement. J Virol 85:7797–7809

    Article  PubMed  CAS  Google Scholar 

  • Gerdes HH, Carvalho RN (2008) Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol 20:470–475

    Article  PubMed  CAS  Google Scholar 

  • Gillespie T, Boevink P, Haupt S, Roberts AG, Toth R, Valentine T, Chapman S, Oparka KJ (2002) Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of tobacco mosaic virus. Plant Cell 14:1207–1222

    Article  PubMed  CAS  Google Scholar 

  • Gurke S, Barroso JF, Hodneland E, Bukoreshtliev NV, Schlicker O, Gerdes HH (2008) Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells. Exp Cell Res 314:3669–3683

    Article  PubMed  CAS  Google Scholar 

  • Haywood V, Kragler F, Lucas WJ (2002) Plasmodesmata: pathways for protein and ribonucleoprotein signaling. Plant Cell 14 (Suppl):S303–S325

    PubMed  CAS  Google Scholar 

  • Heinlein M (2002) Plasmodesmata: dynamic regulation and role in macromolecular cell-to-cell signaling. Curr Opin Plant Biol 5:543–552

    Article  PubMed  CAS  Google Scholar 

  • Heinlein M, Padgett HS, Gens JS, Pickard BG, Casper SJ, Epel BL, Beachy RN (1998) Changing patterns of localization of the tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10:1107–1120

    PubMed  CAS  Google Scholar 

  • Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser MT, Benfey PN (2000) The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555–567

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK (1982) Endoplasmic reticulum in the formation of the cell plate and plasmodesmata. Protoplasma 111:121–133

    Article  Google Scholar 

  • Huang Z, Han Y, Howell SH (2000) Formation of surface tubules and fluorescent foci in Arabidopsis thaliana protoplasts expressing a fusion between the green fluorescent protein and the cauliflower mosaic virus movement protein. Virology 271:58–64

    Article  PubMed  CAS  Google Scholar 

  • Itaya A, Woo YM, Masuta C, Bao Y, Nelson RS, Ding B (1998) Developmental regulation of intercellular protein trafficking through plasmodesmata in tobacco leaf epidermis. Plant Physiol 118:373–385

    Article  PubMed  CAS  Google Scholar 

  • Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A (1991) Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci USA 88:1864–1868

    Article  PubMed  CAS  Google Scholar 

  • Jones MG, Dropkin VH (1976) Scanning electron microscopy in nematode-induced giant transfer cells. Cytobios 15:149–161

    PubMed  CAS  Google Scholar 

  • Kaido M, Funatsu N, Tsuno Y, Mise K, Okuno T (2011) Viral cell-to-cell movement requires formation of cortical punctate structures containing red clover necrotic mosaic virus movement protein. Virology 413:205–215

    Article  PubMed  CAS  Google Scholar 

  • Kawakami S, Watanabe Y, Beachy RN (2004) Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci USA 101:6291–6296

    Article  PubMed  CAS  Google Scholar 

  • Kim I, Zambryski PC (2005) Cell-to-cell communication via plasmodesmata during Arabidopsis embryogenesis. Curr Opin Plant Biol 8:593–599

    Article  PubMed  CAS  Google Scholar 

  • Kim I, Cho E, Crawford K, Hempel FD, Zambryski PC (2005a) Cell-to-cell movement of GFP during embryogenesis and early seedling development in Arabidopsis. Proc Natl Acad Sci USA 102:2227–2231

    Article  PubMed  CAS  Google Scholar 

  • Kim I, Kobayashi K, Cho E, Zambryski PC (2005b) Subdomains for transport via plasmodesmata corresponding to the apical-basal axis are established during Arabidopsis embryogenesis. Proc Natl Acad Sci USA 102:11945–11950

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Yuan Z, Cilia M, Khalfan-Jagani Z, Jackson D (2002) Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc Natl Acad Sci USA 99:4103–4108

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Yuan Z, Jackson D (2003) Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development 130:4351–4362

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Rim Y, Wang J, Jackson D (2005) A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev 19:788–793

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Canio W, Kessler S, Sinha N (2001) Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293:287–289

    Article  PubMed  CAS  Google Scholar 

  • Kragler F (2005) Plasmodesmata: protein transport signals and receptors. In: Oparka K (ed) Plasmodesmata. Blackwell, Oxford, pp 53–72

    Chapter  Google Scholar 

  • Kragler F, Monzer J, Shash K, Xoconostle-Cazares B, Lucas WJ (1998) Cell-to-cell transport of proteins: requirement for unfolding and characterization of binding to a putative plasmodesmal receptor. Plant J 15:367–381

    Article  CAS  Google Scholar 

  • Kragler F, Monzer J, Xoconostle-Cazares B, Lucas WJ (2000) Peptide antagonists of the plasmodesmal macromolecular trafficking pathway. EMBO J 19:2856–2868

    Article  PubMed  CAS  Google Scholar 

  • Layalle S, Volovitch M, Mugat B, Bonneaud N, Parmentier ML, Prochiantz A, Joliot A, Maschat F (2011) Engrailed homeoprotein acts as a signaling molecule in the developing fly. Development 138:2315–2323

    Article  PubMed  CAS  Google Scholar 

  • Levy A, Erlanger M, Rosenthal M, Epel BL (2007a) A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis. Plant J 49:669–682

    Article  PubMed  CAS  Google Scholar 

  • Levy A, Guenoune-Gelbart D, Epel BL (2007b) Beta-1,3-glucanases: plasmodesmal gate keepers for intercellular communication. Plant Signal Behav 2:404–407

    Article  PubMed  Google Scholar 

  • Lough TJ, Lee RH, Emerson SJ, Forster RL, Lucas WJ (2006) Functional analysis of the 5′ untranslated region of potexvirus RNA reveals a role in viral replication and cell-to-cell movement. Virology 351:455–465

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Gilbertson RL (1994) Plasmodesmata in relation to viral movement within leaf tissue. Annu Rev Phytopathol 32:387–411

    Article  CAS  Google Scholar 

  • Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Yoo BC, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2:849–857

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Ham BK, Kim JY (2009) Plasmodesmata—bridging the gap between neighboring plant cells. Trends Cell Biol 19:495–503

    Article  PubMed  CAS  Google Scholar 

  • Maizel A, Bensaude O, Prochiantz A, Joliot A (1999) A short region of its homeodomain is necessary for engrailed nuclear export and secretion. Development 126:3183–3190

    PubMed  CAS  Google Scholar 

  • Maule AJ (2008) Plasmodesmata: structure, function and biogenesis. Curr Opin Plant Biol 11:680–686

    Article  PubMed  CAS  Google Scholar 

  • Miyashima S, Koi S, Hashimoto T, Nakajima K (2011) Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138:2303–2313

    Article  PubMed  CAS  Google Scholar 

  • Mursalimov SR, Deineko EV (2011) An ultrastructural study of cytomixis in tobacco pollen mother cells. Protoplasma 248:717–724

    Article  PubMed  Google Scholar 

  • Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311

    Article  PubMed  CAS  Google Scholar 

  • Niehl A, Heinlein M (2011) Cellular pathways for viral transport through plasmodesmata. Protoplasma 248:75–99

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ (2004) Getting the message across: how do plant cells exchange macromolecular complexes? Trends Plant Sci 9:33–41

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ, Roberts AG (2001) Plasmodesmata. A not so open-and-shut case. Plant Physiol 125:123–126

    Article  PubMed  CAS  Google Scholar 

  • Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts I, Pradel KS et al (1999) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743–754

    Article  PubMed  CAS  Google Scholar 

  • Overall RL, Blackman LM (1996) A model of the macromolecular structure of plasmodesmata. Trends Plant Sci 1:307–311

    Google Scholar 

  • Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    Article  PubMed  CAS  Google Scholar 

  • Pesch M, Huelskamp M (2011) Role of TRIPTYCHON in trichome patterning in Arabidopsis. BMC Plant Biol 11:130

    Article  PubMed  CAS  Google Scholar 

  • Prochiantz A, Joliot A (2003) Can transcription factors function as cell-cell signalling molecules? Nat Rev Mol Cell Biol 4:814–819

    Article  PubMed  CAS  Google Scholar 

  • Pyrgaki C, Trainor P, Hadjantonakis AK, Niswander L (2010) Dynamic imaging of mammalian neural tube closure. Dev Biol 344:941–947

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Pelissier T, Itaya A, Hunt E, Wassenegger M, Ding B (2004) Direct role of a viroid RNA motif in mediating directional RNA trafficking across a specific cellular boundary. Plant Cell 16:1741–1752

    Article  PubMed  CAS  Google Scholar 

  • Rinne PL, Kaikuranta PM, van der Schoot C (2001) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J 26:249–264

    Article  PubMed  CAS  Google Scholar 

  • Rinne PL, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J, van der Schoot C (2011) Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus. Plant Cell 23:130–146

    Article  PubMed  CAS  Google Scholar 

  • Robards AW, Lucas WJ (1990) Plasmodesmata. Annu Rev Plant Physiol Plant Mol Biol 41:369–420

    Article  Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cazares B, Kragler F (2004) The plasmodesmatal transport pathway for homeotic proteins, silencing signals and viruses. Curr Opin Plant Biol 7:641–650

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Medrano R, Kragler F, Wolf S (2012) Signaling and phloem-mobile transcripts. In: Huelskamp M, Kragler F (eds) Short and long distance signaling. Advances in Plant Biology, vol 3. Springer, Berlin, pp 151–177

    Chapter  Google Scholar 

  • Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  PubMed  CAS  Google Scholar 

  • Sena G, Jung JW, Benfey PN (2004) A broad competence to respond to SHORT ROOT revealed by tissue-specific ectopic expression. Development 131:2817–2826

    Article  PubMed  CAS  Google Scholar 

  • Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Köhler K et al (2008) Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nature Cell Biol 10:211–219

    Article  PubMed  CAS  Google Scholar 

  • Stegemann S, Bock R (2009) Exchange of genetic material between cells in plant tissue grafts. Science 324:649–651

    Article  PubMed  CAS  Google Scholar 

  • Stegemann S, Keuthe M, Greiner S, Bock R (2012) Horizontal transfer of chloroplast genomes between plant species. Proc Natl Acad Sci USA 109:2434–2438

    Article  PubMed  CAS  Google Scholar 

  • Tangl E (1880) Ueber offene Communicationen zwischen den Zellen des Endosperms einiger Samen. Jb Wiss Bot 12:170–190

    Google Scholar 

  • Thomas CL, Bayer EM, Ritzenthaler C, Fernandez-Calvino L, Maule AJ (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6:e7

    Article  PubMed  Google Scholar 

  • Tilsner J, Amari K, Torrance L (2011) Plasmodesmata viewed as specialised membrane adhesion sites. Protoplasma 248:39–60

    Article  PubMed  CAS  Google Scholar 

  • Vaten A, Dettmer J, Wu S, Stierhof YD, Miyashima S, Yadav S et al (2011) Callose biosynthesis regulates symplastic trafficking during root development. Dev Cell 21:1144–1155

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Tachibana T, Shimura Y, Okada K (1997) Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science 277:1113–1116

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Kurata T, Tominaga R, Koshino-Kimura Y, Tachibana T, Goto K, Marks MD, Shimura Y, Okada K (2002) Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 129:5409–5419

    Article  PubMed  CAS  Google Scholar 

  • Waigmann E, Turner A, Peart J, Roberts K, Zambryski P (1997) Ultrastructural analysis of leaf trichome plasmodesmata reveals major differences from mesophyll plasmodesmata. Planta 203:75–84

    PubMed  CAS  Google Scholar 

  • Wang X, Gerdes HH (2012) Long-distance electrical coupling via tunneling nanotubes. Biochim Biophys Acta 1818:2082–2086

    Article  PubMed  CAS  Google Scholar 

  • Winter N, Kollwig G, Zhang S, Kragler F (2007) MPB2C, a microtubule-associated protein, regulates non-cell-autonomy of the homeodomain protein KNOTTED1. Plant Cell 19:3001–3018

    Article  PubMed  CAS  Google Scholar 

  • Wolf S, Deom CM, Beachy RN, Lucas WJ (1989) Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246:377–379

    Article  PubMed  CAS  Google Scholar 

  • Wolf S, Deom CM, Beachy R, Lucas WJ (1991) Plasmodesmatal function is probed using transgenic tobacco plants that express a virus movement protein. Plant Cell 3:593–604

    PubMed  CAS  Google Scholar 

  • Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PG, Hariharan N et al (2011) Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science 333:1141–1144

    Article  PubMed  CAS  Google Scholar 

  • Zavaliev R, Ueki S, Epel BL, Citovsky V (2011) Biology of callose (beta-1,3-glucan) turnover at plasmodesmata. Protoplasma 248:117–130

    Article  PubMed  CAS  Google Scholar 

  • Zhong X, Archual AJ, Amin AA, Ding B (2008) A genomic map of viroid RNA motifs critical for replication and systemic trafficking. Plant Cell 20:35–47

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I apologize to all of my colleagues whose work was not mentioned or addressed in depth because of space limitations. I thank the anonymous reviewers for their helpful comments for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Kragler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kragler, F. Plasmodesmata: intercellular tunnels facilitating transport of macromolecules in plants. Cell Tissue Res 352, 49–58 (2013). https://doi.org/10.1007/s00441-012-1550-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1550-1

Keywords

Navigation