Skip to main content

Plasmodesmata

  • Living reference work entry
  • First Online:
Cell Biology

Introduction

Intercellular communication in multicellular organisms is critical for proper development, metabolism, and environmental responses. This occurs in part via secreted signals and receptors in recipient cells, but both animals and plants also directly transfer molecules cell to cell, to coordinate cellular activity across diverse cell types. This kind of communication is especially important in plants, where development continues over the life span. Many plant developmental genes have been found to act non-cell autonomously. The developmental regulators (proteins and/or ribonucleic acids (RNAs)) encoded by a number of these genes are transported between cells through the microscopic channels called plasmodesmata (PDs, plural, singular = plasmodesma) (Xu and Jackson 2010; Burch-Smith and Zambryski 2012). PDs also facilitate systemic movement of protein and RNA molecules by providing access to the phloem vascular system. The PD pathway is hijacked by plant viruses to spread...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science. 2005;309:1052–6.

    Article  CAS  PubMed  Google Scholar 

  • Amari K, Boutant E, Hofmann C, Schmitt-Keichinger C, Fernandez-Calvino L, Didier P, Lerich A, Mutterer J, Thomas CL, Heinlein M, Mely Y, Maule AJ, Ritzenthaler C. A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathog. 2010;6:e1001119.

    Article  PubMed Central  PubMed  Google Scholar 

  • Axtell MJ. Classification and comparison of small RNAs from plants. Annu Rev Plant Biol. 2013;64:137–59.

    Article  CAS  PubMed  Google Scholar 

  • Balkunde R, Pesch M, Hülskamp M. Trichome patterning in Arabidopsis thaliana from genetic to molecular models. Curr Top Dev Biol. 2010;91:299–321.

    Article  CAS  PubMed  Google Scholar 

  • Benitez-Alfonso Y, Jackson D, Maule A. Redox regulation of intercellular transport. Protoplasma. 2011;248:131–40.

    Article  CAS  PubMed  Google Scholar 

  • Berger F, Haseloff J, Schiefelbein J, Dolan L. Positional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries. Curr Biol. 1998;8:421–30.

    Article  CAS  PubMed  Google Scholar 

  • Bishopp A, El-Showk S, Helariutta Y. Vascular development in Arabidopsis roots. In: Eshel A, and Beeckman T (eds.) Plant roots: the hidden half. 4th ed. Boca Raton, FL, USA: CRC Press; 2013. p. 7-I.

    Google Scholar 

  • Bouyer D, Geier F, Kragler F, Schnittger A, Pesch M, Wester K, Balkunde R, Timmer J, Fleck C, Hulskamp M. Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in Arabidopsis trichome formation. PLoS Biol. 2008;6:e141.

    Article  PubMed Central  PubMed  Google Scholar 

  • Burch-Smith TM, Zambryski PC. Plasmodesmata paradigm shift: regulation from without versus within. Annu Rev Plant Biol. 2012;63:239–60.

    Article  CAS  PubMed  Google Scholar 

  • Calarco JP, Martienssen RA. Genome reprogramming and small interfering RNA in the Arabidopsis germline. Curr Opin Genet Dev. 2011;21:134–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vaten A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature. 2010;465:316–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen X. Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol. 2009;25:21–44.

    Article  PubMed  Google Scholar 

  • Chevalier E, Loubert-Hudon A, Zimmerman EL, Matton DP. Cell-cell communication and signalling pathways within the ovule: from its inception to fertilization. New Phytol. 2011;192:13–28.

    Article  CAS  PubMed  Google Scholar 

  • Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, Topf M, Horwich AL, Saibil HR. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell. 2012;149:113–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daviere JM, Achard P. Gibberellin signaling in plants. Development. 2013;140:1147–51.

    Article  CAS  PubMed  Google Scholar 

  • Dunoyer P, Melnyk C, Molnar A, Slotkin RK. Plant mobile small RNAs. Cold Spring Harb Perspect Biol. 2013;5.

    Google Scholar 

  • Eckardt NA. Physcomitrella reveals a key role for stromal hsp70 chaperones in chloroplast protein import. Plant Cell. 2010;22:1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Epel BL. Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host beta-1,3-glucanases. Semin Cell Dev Biol. 2009;20:1074–81.

    Article  CAS  PubMed  Google Scholar 

  • Faulkner C, Maule A. Opportunities and successes in the search for plasmodesmal proteins. Protoplasma. 2011;248:27–38.

    Article  CAS  PubMed  Google Scholar 

  • Faulkner C, Akman OE, Bell K, Jeffree C, Oparka K. Peeking into pit fields: a multiple twinning model of secondary plasmodesmata formation in tobacco. Plant Cell. 2008;20:1504–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez-Calvino L, Faulkner C, Walshaw J, Saalbach G, Bayer E, Benitez-Alfonso Y, Maule A. Arabidopsis plasmodesmal proteome. PLoS One. 2011;6:e18880.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fitzgibbon J, Bell K, King E, Oparka K. Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy. Plant Physiol. 2010;153:1453–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furuta K, Lichtenberger R, Helariutta Y. The role of mobile small RNA species during root growth and development. Curr Opin Cell Biol. 2012;24:211–6.

    Article  CAS  PubMed  Google Scholar 

  • Gallagher KL, Benfey PN. Both the conserved GRAS domain and nuclear localization are required for SHORT-ROOT movement. Plant J. 2009;57:785–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gursanscky NR, Carroll BJ. Mechanism of small RNA movement. In: Short and long distance signaling, Advances in plant biology, vol. 3. New York: Springer; 2012. p. 99–130.

    Chapter  Google Scholar 

  • Gutierrez-Marcos JF, Dickinson HG. Epigenetic reprogramming in plant reproductive lineages. Plant Cell Physiol. 2012;53:817–23.

    Article  CAS  PubMed  Google Scholar 

  • Ham BK, Li G, Kang BH, Zeng F, Lucas WJ. Overexpression of Arabidopsis plasmodesmata germin-like proteins disrupts root growth and development. Plant Cell. 2012;24:3630–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hannapel DJ. Long-distance signaling via mobile RNAs. In: F. Baluška (ed.) Long-Distance Systemic Signaling and Communication in Plants, Signaling and Communication in Plants. Vol. 19. Berlin Heidelberg: Springer; 2013. p. 53–70.

    Google Scholar 

  • Hyun TK, Uddin MN, Rim Y, Kim JY. Cell-to-cell trafficking of RNA and RNA silencing through plasmodesmata. Protoplasma. 2011;248:101–16.

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Kurata T, Okada K, Wada T. A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol. 2008;59:365–86.

    Article  CAS  PubMed  Google Scholar 

  • Jackson D. Double labeling of KNOTTED1 mRNA and protein reveals multiple potential sites of protein trafficking in the shoot apex. Plant Physiol. 2002;129:1423–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kehr J. Long-distance signaling by small RNAs. In: Kragler F, and Hulskamp M (eds.) Short and Long Distance signaling. Advances in plant biology vol. 3. New York: Springer; 2012. p. 131–50.

    Google Scholar 

  • Kim JY, Rim Y, Wang J, Jackson D. A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev. 2005;19:788–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koizumi K, Wu S, MacRae-Crerar A, Gallagher KL. An essential protein that interacts with endosomes and promotes movement of the SHORT-ROOT transcription factor. Curr Biol. 2011;21:1559–64.

    Article  CAS  PubMed  Google Scholar 

  • Kragler F. Plasmodesmata: intercellular tunnels facilitating transport of macromolecules in plants. Cell Tissue Res. 2013;352:49–58.

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Cui WE. Non-cell autonomous RNA trafficking and long-distance signaling. J Plant Biol. 2009;52:10–8.

    Article  CAS  Google Scholar 

  • Lee J-Y, Zhou J. Function and identification of mobile transcription factors. In: Kragler F, and Hulskamp M (eds.) Short and Long Distance signaling. Advances in plant biology, vol. 3. New York: Springer; 2012. p. 61–86.

    Google Scholar 

  • Lee JY, Wang X, Cui W, Sager R, Modla S, Czymmek K, Zybaliov B, van Wijk K, Zhang C, Lu H, Lakshmanan V. A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. Plant Cell. 2011;23:3353–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levy A, Guenoune-Gelbart D, Epel BL. Beta-1,3-glucanases: Plasmodesmal gate keepers for intercellular communication. Plant Signal Behav. 2007;2:404–7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lewis JD, Lazarowitz SG. Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Natl Acad Sci U S A. 2010;107:2491–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu L, Liu C, Hou X, Xi W, Shen L, Tao Z, Wang Y, Yu H. FTIP1 is an essential regulator required for florigen transport. PLoS Biol. 2012;10:e1001313.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lucas WJ, Ham BK, Kim JY. Plasmodesmata – bridging the gap between neighboring plant cells. Trends Cell Biol. 2009;19:495–503.

    Article  CAS  PubMed  Google Scholar 

  • Maule A, Faulkner C, Benitez-Alfonso Y. Plasmodesmata “in Communicado”. Front Plant Sci. 2012;3:30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science. 2010;328:872–5.

    Article  CAS  PubMed  Google Scholar 

  • Molnar A, Melnyk C, Baulcombe DC. Silencing signals in plants: a long journey for small RNAs. Genome Biol. 2011;12:215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa A, Moriya K, Arita M, Yamamoto Y, Kitamura K, Ishiguro N, Kanzaki T, Oka T, Makabe K, Kuwajima K, Yohda M. Dissection of the ATP-dependent conformational change cycle of a group II chaperonin. J Mol Biol. 2014;426:447–59.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima K, Sena G, Nawy T, Benfey PN. Intercellular movement of the putative transcription factor SHR in root patterning. Nature. 2001;413:307–11.

    Article  CAS  PubMed  Google Scholar 

  • Oparka KJ, Boevink P. Techniques for imaging intercellular transport. Plasmodesmata Annu Plant Rev. 2007;18:241–62.

    Google Scholar 

  • Pena E, Niel A, Heinlein M. Viral studies point the way: mechanisms of intercellular transport. In: Kragler F, and Hulskamp M (eds.) Short and Long Distance signaling. Advances in plant biology, vol. 3. New York: Springer; 2012. p. 1–44.

    Google Scholar 

  • Rinne PL, van der Schoot C. Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development. 1998;125:1477–85.

    CAS  PubMed  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O. Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol. 2009;60:485–510.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Medrano R, Kragler F, Wolf S. Signaling and phloem-mobile transcripts. In: Kragler F, and Hulskamp M (eds.) Short and Long Distance signaling. Advances in plant biology, vol. 3. New York: Springer; 2012. p. 151–77.

    Google Scholar 

  • Salmon MS, Bayer EM. Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics. Front Plant Sci. 2013;3:307.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schoelz JE, Harries PA, Nelson RS. Intracellular transport of plant viruses: finding the door out of the cell. Mol Plant. 2011;4:813–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwab R, Maizel A, Ruiz-Ferrer V, Garcia D, Bayer M, Crespi M, Voinnet O, Martienssen RA. Endogenous TasiRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsis thaliana. PLoS One. 2009;4:e5980.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sena G, Jung JW, Benfey PN. A broad competence to respond to SHORT ROOT revealed by tissue-specific ectopic expression. Development. 2004;131:2817–26.

    Article  CAS  PubMed  Google Scholar 

  • Skopelitis DS, Husbands AY, Timmermans MC. Plant small RNAs as morphogens. Curr Opin Cell Biol. 2012;24:217–24.

    Article  CAS  PubMed  Google Scholar 

  • Stahl Y, Simon R. Gated communities: apoplastic and symplastic signals converge at plasmodesmata to control cell fates. J Exp Bot. 2013;64:5237–41.

    Article  CAS  PubMed  Google Scholar 

  • Takeda R, Ding B. Viroid intercellular trafficking: RNA motifs, cellular factors and broad impacts. Viruses. 2009;1:210–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ueki S, Citovsky V. To gate, or not to gate: regulatory mechanisms for intercellular protein transport and virus movement in plants. Mol Plant. 2011;4:782–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voinnet O, Baulcombe DC. Systemic signalling in gene silencing. Nature. 1997;389:553.

    Article  CAS  PubMed  Google Scholar 

  • Wester K, Digiuni S, Geier F, Timmer J, Fleck C, Hulskamp M. Functional diversity of R3 single-repeat genes in trichome development. Development. 2009;136:1487–96.

    Article  CAS  PubMed  Google Scholar 

  • White RG, Barton DA. The cytoskeleton in plasmodesmata: a role in intercellular transport? J Exp Bot. 2011;62:5249–66.

    Article  CAS  PubMed  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science. 2005;309:1056–9.

    Article  CAS  PubMed  Google Scholar 

  • Winter N, Kollwig G, Zhang S, Kragler F. MPB2C, a microtubule-associated protein, regulates non-cell-autonomy of the homeodomain protein KNOTTED1. Plant Cell. 2007;19:3001–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu S, Gallagher KL. Transcription factors on the move. Curr Opin Plant Biol. 2012;15:645–51.

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Gallagher KL. Intact microtubules are required for the intercellular movement of the SHORT-ROOT transcription factor. Plant J. 2013;74:148–59.

    Article  CAS  PubMed  Google Scholar 

  • Xie B, Hong Z. Unplugging the callose plug from sieve pores. Plant Signal Behav. 2011;6:491–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu XM, Jackson D. Lights at the end of the tunnel: new views of plasmodesmal structure and function. Curr Opin Plant Biol. 2010;13:684–92.

    Article  CAS  PubMed  Google Scholar 

  • Xu XM, Jackson D. Cell-to-cell movement of homeodomain transcription factors: yesterday, today and tomorrow. In: Kragler F, and Hulskamp M (eds.) Short and Long Distance signaling. Advances in plant biology, vol. 3. New York: Springer; 2012. p. 87–98.

    Google Scholar 

  • Xu XM, Wang J, Xuan Z, Goldshmidt A, Borrill PG, Hariharan N, Kim JY, Jackson D. Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science. 2011;333:1141–4.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Nukazuka A, Tsukaya H. Leaf adaxial-abaxial polarity specification and lamina outgrowth: evolution and development. Plant Cell Physiol. 2012;53:1180–94.

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa M. Biogenesis of trans-acting siRNAs, endogenous secondary siRNAs in plants. Genes Genet Syst. 2013;88:77–84.

    CAS  PubMed  Google Scholar 

  • Zambryski PC, Xu M, Stonebloom S, Burch-Smith T. Embryogenesis as a model system to dissect the genetic and developmental regulation of cell-to-cell transport via plasmodesmata. In: Kragler F, and Hulskamp M (eds.) Short and Long Distance signaling. Advances in plant biology, vol. 3. New York: Springer; 2012. p. 45–60.

    Google Scholar 

  • Zavaliev R, Ueki S, Epel BL, Citovsky V. Biology of callose (beta-1,3-glucan) turnover at plasmodesmata. Protoplasma. 2011;248:117–30.

    Article  CAS  PubMed  Google Scholar 

  • Zavaliev R, Levy A, Gera A, Epel BL. Subcellular dynamics and role of Arabidopsis beta-1,3-glucanases in cell-to-cell movement of tobamoviruses. Mol Plant Microbe Interact. 2013;26:1016–30.

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Kragler F, and Hulskamp M (eds.) Short and Long Distance signaling. Advances in plant biology, vol. 3. New York: Springer; 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Bui, H.T., Balkunde, R., Jackson, D. (2014). Plasmodesmata. In: Assmann, S., Liu, B. (eds) Cell Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7881-2_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7881-2_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7881-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics