Skip to main content

Advertisement

Log in

Cellular pathways for viral transport through plasmodesmata

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Plant viruses use plasmodesmata (PD) to spread infection between cells and systemically. Dependent on viral species, movement through PD can occur in virion or non-virion form, and requires different mechanisms for targeting and modification of the pore. These mechanisms are supported by viral movement proteins and by other virus-encoded factors that interact among themselves and with plant cellular components to facilitate virus movement in a coordinated and regulated fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AbMV:

Abutilon mosaic virus

AMV:

Alfalfa mosaic virus

BDMV:

Bean dwarf mosaic virus

BMV:

Brome mosaic virus

BYV:

Beet yellows virus

CaMV:

Cauliflower mosaic virus

CMV:

Cucumber mosaic virus

CPMV:

Cowpea mosaic virus

GFLV:

Grapevine fanleaf virus

GRV:

Groundnut rosette virus

PMTV:

Potato mop-top virus

PPV:

Plum pox virus

PsbMV:

Pea seed-borne mosaic virus

PVX:

Potato virus X

PVY:

Potato virus Y

TCrLYV:

Tomato crinkle leaf yellows virus

TEV:

Tobacco etch virus

TGMV:

Tomato golden mosaic virus

TLCV:

Tomato leaf curl virus

TMV:

Tobacco mosaic virus

ToMV:

Tomato mosaic virus

TSWV:

Tomato spotted wilt virus

TVCV:

Turnip vein clearing virus

WClMV:

White clover mosaic virus

CP:

Coat protein

EB1:

Microtubule end-binding protein 1

ER:

Endoplasmic reticulum

HC-Pro:

Helper component-protease

HR:

Hypersensitive response

HSF:

Heat-shock factor

MP:

Movement protein

MT:

Microtubules

NCAP:

Non-cell-autonomous protein

NIG:

NSP-interacting ATPase

NSP:

Nuclear shuttle protein

PD:

Plasmodesmata

PDLP:

Plasmodesmata-localized protein

PME:

Pectin-methylesterase

vRNA:

Viral RNA

RDR:

RNA-dependent-RNA polymerase

RISC:

RNA-induced silencing complex

RNP:

Ribonucleoprotein complex

SEL:

Size exclusion limit

TGB:

Triple gene block

VRC:

Viral replication complex

References

  • Akamatsu N, Takeda A, Kishimoto M, Kaido M, Okuno T, Mise K (2007) Phosphorylation and interaction of the movement and coat proteins of Brome mosaic virus in infected barley protoplasts. Arch Virol 152:2087–2093

    Article  CAS  PubMed  Google Scholar 

  • Alzhanova DV, Napuli AJ, Creamer R, Dolja VV (2001) Cell-to-cell movement and assembly of a plant closterovirus: roles for the capsid proteins and Hsp70 homolog. EMBO J 20:6997–7007

    Article  CAS  PubMed  Google Scholar 

  • Amari K, Boutant E, Hofmann C, Schmitt-Keichinger C, Fernandez-Calvino L, Didier P, Lerich A, Mutterer J, Thomas C, Heinlein M, Mely Y, Maule AJ, Ritzenthaler C (2010) A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathog 6: e1001119

  • Andreev IA, Kim HS, Kalinina NO, Rakitina DV, Fitzgerald AG, Palukaitis P, Taliansky ME (2004) Molecular interactions between a plant virus movement protein and RNA: force spectroscopy investigation. J Mol Biol 339:1041–1047

    Article  CAS  PubMed  Google Scholar 

  • Ashby J, Boutant E, Seemanpillai M, Groner A, Sambade A, Ritzenthaler C, Heinlein M (2006) Tobacco mosaic virus movement protein functions as a structural microtubule-associated protein. J Virol 80:8329–8344

    Article  CAS  PubMed  Google Scholar 

  • Atkins D, Hull R, Wells B, Roberts K, Moore P, Beachy RN (1991) The Tobacco mosaic virus 30 K movement protein in transgenic tobacco plants is localized to plasmodesmata. J Gen Virol 72:209–211

    Article  CAS  PubMed  Google Scholar 

  • Avisar D, Prokhnevsky AI, Dolja VV (2008) Class VIII myosins are required for plasmodesmatal localization of a closterovirus Hsp70 homolog. J Virol 82:2836–2843

    Article  CAS  PubMed  Google Scholar 

  • Baluska F, Samaj J, Napier R, Volkmann D (1999) Maize calreticulin localizes preferentially to plasmodesmata in root apex. Plant J 19:481–488

    Article  CAS  PubMed  Google Scholar 

  • Baron-Epel O, Hernandez D, Jiang LW, Meiners S, Schindler M (1988) Dynamic continuity of cytoplasmic and membrane compartments between plant cells. J Cell Biol 106:715–721

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Bayne EH, Rakitina DV, Morozov SY, Baulcombe DC (2005) Cell-to-cell movement of Potato potexvirus X is dependent on suppression of RNA silencing. Plant J 44:471–482

    Article  CAS  PubMed  Google Scholar 

  • Belin C, Schmitt C, Gaire F, Walter B, Demangeat G, Pinck L (1999) The nine C-terminal residues of the Grapevine fanleaf nepovirus movement protein are critical for systemic virus spread. J Gen Virol 80:1347–1356

    CAS  PubMed  Google Scholar 

  • Blackman LM, Overall RL (1998) Immunolocalization of the cytoskeleton to plasmodesmata of Chara corallina. Plant J 14:733–741

    Article  CAS  Google Scholar 

  • Blum H, Gross HJ, Beier H (1989) The expression of the TMV-specific 30-kDa protein in tobacco protoplasts is strongly and selectively enhanced by actinomycin. Virology 169:51–61

    Article  CAS  PubMed  Google Scholar 

  • Boevink P, Oparka K, Santa Cruz S, Martin B, Betteridge A, Hawes C (1998) Stacks on tracks: the plant Golgi apparatus traffics on an actin/ER network. Plant J 15:441–447

    Article  CAS  PubMed  Google Scholar 

  • Boutant E, Fitterer C, Ritzenthaler C, Heinlein M (2009) Interaction of the Tobacco mosaic virus movement protein with microtubules during the cell cycle in tobacco BY-2 cells. Protoplasma 237:3–12

    Article  CAS  PubMed  Google Scholar 

  • Boyko V, Ferralli J, Ashby J, Schellenbaum P, Heinlein M (2000a) Function of microtubules in intercellular transport of plant virus RNA. Nat Cell Biol 2:826–832

    Article  CAS  PubMed  Google Scholar 

  • Boyko V, Ferralli J, Heinlein M (2000b) Cell-to-cell movement of TMV RNA is temperature-dependent and corresponds to the association of movement protein with microtubules. Plant J 22:315–325

    Article  CAS  PubMed  Google Scholar 

  • Boyko V, van der Laak J, Ferralli J, Suslova E, Kwon M-O, Heinlein M (2000c) Cellular targets of functional and dysfunctional mutants of Tobacco mosaic virus movement protein fused to GFP. J Virol 74:11339–11346

    Article  CAS  PubMed  Google Scholar 

  • Boyko V, Ashby JA, Suslova E, Ferralli J, Sterthaus O, Deom CM, Heinlein M (2002) Intramolecular complementing mutations in Tobacco mosaic virus movement protein confirm a role for microtubule association in viral RNA transport. J Virol 76:3974–3980

    Article  CAS  PubMed  Google Scholar 

  • Boyko V, Hu Q, Seemanpillai M, Ashby J, Heinlein M (2007) Validation of microtubule-associated Tobacco mosaic virus RNA movement and involvement of microtubule-aligned particle trafficking. Plant J 51:589–603

    Article  CAS  PubMed  Google Scholar 

  • Brandner K, Sambade A, Boutant E, Didier P, Mély Y, Ritzenthaler C, Heinlein M (2008) TMV movement protein interacts with GFP-tagged microtubule endbinding protein 1 (EB1). Plant Physiol 147:611–623

    Article  CAS  PubMed  Google Scholar 

  • Bucher GL, Tarina C, Heinlein M, Di Serio F, Meins F Jr, Iglesias VA (2001) Local expression of enzymatically active class 1 beta-1, 3-glucanase enhances symptoms of TMV infection in tobacco. Plant J 28:361–369

    Article  CAS  PubMed  Google Scholar 

  • Buck KW (1999) Replication of Tobacco mosaic virus RNA. Philos Trans R Soc Lond B Biol Sci 354:613–627

    Article  CAS  PubMed  Google Scholar 

  • Canut H, Carrasco A, Galaud JP, Cassan C, Bouyssou H, Vita N, Ferrara P, Pont-Lezica R (1998) High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall. Plant J 16:63–71

    Article  CAS  PubMed  Google Scholar 

  • Carrington JC, Jensen PE, Schaad MC (1998) Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant J 14:393–400

    Article  CAS  PubMed  Google Scholar 

  • Carvalho CM, Wellink J, Ribeiro SG, Goldbach RW, Van Lent JW (2003) The C-terminal region of the movement protein of Cowpea mosaic virus is involved in binding to the large but not to the small coat protein. J Gen Virol 84:2271–2277

    Article  CAS  PubMed  Google Scholar 

  • Carvalho MF, Turgeon R, Lazarowitz SG (2006) The geminivirus nuclear shuttle protein NSP inhibits the activity of AtNSI, a vascular-expressed Arabidopsis acetyltransferase regulated with the sink-to-source transition. Plant Physiol 140:1317–1330

    Article  CAS  PubMed  Google Scholar 

  • Carvalho CM, Fontenelle MR, Florentino LH, Santos AA, Zerbini FM, Fontes EP (2008) A novel nucleocytoplasmic traffic GTPase identified as a functional target of the bipartite geminivirus nuclear shuttle protein. Plant J 55:869–880

    Article  CAS  PubMed  Google Scholar 

  • Chapman SN, Hills G, Watts J, Baulcombe DC (1992) Mutational analysis of the coat protein gene of Potatovirus X: effects on virion morphology and viral pathogenicity. Virology 191:223–230

    Article  CAS  PubMed  Google Scholar 

  • Chen M-H, Sheng J, Hind G, Handa AK, Citovsky V (2000) Interaction between the Tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO J 19:913–920

    Article  CAS  PubMed  Google Scholar 

  • Chen MH, Tian GW, Gafni Y, Citovsky V (2005) Effects of calreticulin on viral cell-to-cell movement. Plant Physiol 138:1866–1876

    Article  CAS  PubMed  Google Scholar 

  • Cheng CP, Tzafrir I, Lockhart BE, Olszewski NE (1998) Tubules containing virions are present in plant tissues infected with Commelina yellow mottle badnavirus. J Gen Virol 79:925–929

    CAS  PubMed  Google Scholar 

  • Chiu MH, Chen IH, Baulcombe DC, Tsai CH (2010) The silencing suppressor P25 of Potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway. Mol Plant Pathol 11:641–649

    CAS  PubMed  Google Scholar 

  • Christensen N, Tilsner J, Bell K, Hammann P, Parton R, Lacomme C, Oparka K (2009) The 5′cap of Tobacco mosaic virus (TMV) is required for virion attachment to the actin/ER network during early infection. Traffic 10:536–551

    Article  CAS  PubMed  Google Scholar 

  • Citovsky V, Knorr D, Schuster G, Zambryski P (1990) The P30 movement protein of Tobacco mosaic virus is a single-stranded nucleic acid binding protein. Cell 60:637–647

    Article  CAS  PubMed  Google Scholar 

  • Citovsky V, McLean BG, Zupan JR, Zambryski P (1993) Phosphorylation of Tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase. Genes Dev 7:904–910

    Article  CAS  PubMed  Google Scholar 

  • Cleland RE, Fujiwara T, Lucas WJ (1994) Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress. Protoplasma 178:81–85

    Article  CAS  PubMed  Google Scholar 

  • Cotton S, Grangeon R, Thivierge K, Mathieu I, Ide C, Wei T, Wang A, Laliberte JF (2009) Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome. J Virol 83:10460–10471

    Article  CAS  PubMed  Google Scholar 

  • Cowan GH, Lioliopoulou F, Ziegler A, Torrance L (2002) Subcellular localization, protein interactions, and RNA binding activity of Potato mop-top virus triple gene block proteins. Virology 298:106–115

    Article  CAS  PubMed  Google Scholar 

  • Crawford KM, Zambryski PC (2000) Subcellular localization determines the availability of non-targeted proteins to plasmodesmatal transport. Curr Biol 10:1032–1040

    Article  CAS  PubMed  Google Scholar 

  • Csorba T, Bovi A, Dalmay T, Burgyan J (2007) The p122 subunit of Tobacco mosaic virus replicase is a potent silencing suppressor and compromises both small interfering RNA- and microRNA-mediated pathways. J Virol 81:11768–11780

    Article  CAS  PubMed  Google Scholar 

  • Curin M, Ojangu EL, Trutnyeva K, Ilau B, Truve E, Waigmann E (2007) MPB2C, a microtubule-associated plant factor, is required for microtubular accumulation of Tobacco mosaic virus movement protein in plants. Plant Physiol 143:801–811

    Article  CAS  PubMed  Google Scholar 

  • Deom CM, Oliver MJ, Beachy RN (1987) The 30-kilodalton gene product of Tobacco mosaic virus potentiates virus movement. Science 237:384–389

    Article  Google Scholar 

  • Desvoyes B, Faure-Rabasse S, Chen MH, Park JW, Scholthof HB (2002) A novel plant homeodomain protein interacts in a functionally relevant manner with a virus movement protein. Plant Physiol 129:1521–1532

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Pendon JA, Ding S-W (2008) Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu Rev Phytopathol 46:303–326

    Article  CAS  PubMed  Google Scholar 

  • Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  CAS  PubMed  Google Scholar 

  • Ding B, Haudenshield JS, Hull RJ, Wolf S, Beachy RN, Lucas WJ (1992a) Secondary plasmodesmata are specific sites of localization of the Tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4:915–928

    Article  CAS  PubMed  Google Scholar 

  • Ding B, Turgeon R, Parthasarathy MV (1992b) Substructure of freeze-substituted plasmodesmata. Protoplasma 169:28–41

    Article  Google Scholar 

  • Ding B, Kwon M-O, Warnberg L (1996) Evidence that actin filaments are involved in controlling the permeability of plasmodesmata in tobacco mesophyll. Plant J 10:157–164

    Article  Google Scholar 

  • Ding XS, Liu J, Cheng NH, Folimonov A, Hou YM, Bao Y, Katagi C, Carter SA, Nelson RS (2004) The Tobacco mosaic virus 126-kDa protein associated with virus replication and movement suppresses RNA silencing. Mol Plant Microbe Interact 17:583–592

    Article  CAS  PubMed  Google Scholar 

  • Dolja VV, Haldeman-Cahill R, Montgomery AE, Vandenbosch KA, Carrington JC (1995) Capsid protein determinants involved in cell-to-cell and long distance movement of Tobacco etch potyvirus. Virology 206:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Dolja VV, Haldeman R, Robertson NL, Dougherty WG, Carrington JC (1994) Distinct functions of capsid protein in assembly and movement of Tobacco etch virus. EMBO J 13:1482–1491

    CAS  PubMed  Google Scholar 

  • Dolja VV, Kreuze JF, Valkonen JPT (2006) Comparative and functional genomics of closteroviruses. Virus Res 117:38–51

    Article  CAS  PubMed  Google Scholar 

  • Dorokhov YL, Mäkinen K, Yu O, Merits A, Saarinen J, Kalkkinen N, Atabekov JG, Saarma M (1999) A novel function for a ubiquitous plant enzyme pectin methylesterase: the host-cell receptor for the Tobacco mosaic virus movement protein. FEBS Lett 461:223–228

    Article  CAS  PubMed  Google Scholar 

  • Dunoyer P, Himber C, Voinnet O (2005) DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet 37:1356–1360

    Article  CAS  PubMed  Google Scholar 

  • Dunoyer P, Thomas C, Harrison S, Revers F, Maule A (2004) A cysteine-rich plant protein potentiates potyvirus movement through an interaction with the virus genome-linked protein VPg. J Virol 78:2301–2309

    Article  CAS  PubMed  Google Scholar 

  • Dunoyer P, Brosnan CA, Schott G, Wang Y, Jay F, Alioua A, Himber C, Voinnet O (2010a) An endogenous, systemic RNAi pathway in plants. EMBO J 29:1699–1712

    Article  CAS  PubMed  Google Scholar 

  • Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carrington JC, Voinnet O (2010b) Small RNA duplexes function as mobile silencing signals between plant cells. Science 328:912–916

    Article  CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Epel BL (2009) Plant viruses spread by diffusion on ER-associated movement-protein-rafts through plasmodesmata gated by viral induced host beta-1,3-glucanases. Semin Cell Dev Biol 20:1074–1081

    Article  CAS  PubMed  Google Scholar 

  • Erhardt M, Stussi-Garaud C, Guilley H, Richards KE, Jonard G, Bouzoubaa S (1999) The first triple gene block protein of Peanut clump virus localizes to the plasmodesmata during virus infection. Virology 264:220–229

    Article  CAS  PubMed  Google Scholar 

  • Erhardt M, Morant M, Ritzenthaler C, Stussi-Garaud C, Guilley H, Richards K, Jonard G, Bouzoubaa S, Gilmer D (2000) P42 movement protein of Beet necrotic yellow vein virus is targeted by the movement proteins P13 and P15 to punctate bodies associated with plasmodesmata. Mol Plant Microbe Interact 13:520–528

    Article  CAS  PubMed  Google Scholar 

  • Faik A, Laboure AM, Gulino D, Mandaron P, Falconet D (1998) A plant surface protein sharing structural properties with animal integrins. Eur J Biochem 253:552–559

    Article  CAS  PubMed  Google Scholar 

  • Faulkner CR, Blackman LM, Collings DA, Cordwell SJ, Overall RL (2009) Anti-tropomyosin antibodies co-localise with actin microfilaments and label plasmodesmata. Eur J Cell Biol 88:357–369

    Article  CAS  PubMed  Google Scholar 

  • Ferralli J, Ashby J, Fasler M, Boyko V, Heinlein M (2006) Disruption of microtubule organization and centrosome function by expression of Tobacco mosaic virus movement protein. J Virol 80:5807–5821

    Article  CAS  PubMed  Google Scholar 

  • Florentino LH, Santos AA, Fontenelle MR, Pinheiro GL, Zerbini FM, Baracat-Pereira MC, Fontes EP (2006) A PERK-like receptor kinase interacts with the geminivirus nuclear shuttle protein and potentiates viral infection. J Virol 80:6648–6656

    Article  CAS  PubMed  Google Scholar 

  • Foissner I, Menzel D, Wasteneys GO (2009) Microtubule-dependent motility and orientation of the cortical endoplasmic reticulum in elongating characean internodal cells. Cell Motil Cytoskeleton 66:142–155

    Article  CAS  PubMed  Google Scholar 

  • Foster RLS, Beck DL, Guilford PJ, Voot DM, Van Dolleweerd CJ, Andersen MT (1992) The coat protein of White clover mosaic potexvirus has a role in facilitating cell-to-cell transport in plants. Virology 191:480–484

    Article  Google Scholar 

  • Franke WW (1971) Cytoplasmic microtubules linked to endoplasmic reticulum with cross-bridges. Exp Cell Res 66:486–489

    Article  CAS  PubMed  Google Scholar 

  • Fridborg I, Grainger J, Page A, Coleman M, Findlay K, Angell S (2003) TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Mol Plant Microbe Interact 16:132–140

    Article  CAS  PubMed  Google Scholar 

  • Gardiner WE, Sunter G, Brand L, Elmer JS, Rogers SG, Bisaro DM (1988) Genetic analysis of Tomato golden mosaic virus: the coat protein is not required for systemic spread or symptom development. EMBO J 7:899–904

    CAS  PubMed  Google Scholar 

  • Gillespie T, Boevink P, Haupt S, Roberts AG, Toth R, Valentine T, Chapman S, Oparka KJ (2002) Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of Tobacco mosaic virus. Plant Cell 14:1207–1222

    Article  CAS  PubMed  Google Scholar 

  • Golomb L, Abu-Abied M, Belausov E, Sadot E (2008) Different subcellular localizations and functions of Arabidopsis myosin VIII. BMC Plant Biol 8:3

    Article  PubMed  CAS  Google Scholar 

  • Gorshkova EN, Erokhina TN, Stroganova TA, Yelina NE, AAj Z, Kalinina NO, Schiemann J, Solovyev AG, Morozov SY (2003) Immunodetection and fluorescence microscopy of transgenically expressed hordeivirus TGBp3 movement protein reveals its association with endoplasmic reticulum elements in close proximity to plasmodesmata. J Gen Virol 84:985–994

    Article  CAS  PubMed  Google Scholar 

  • Grieco F, Castellano MA, Di Sansebastiano GP, Maggipinto G, Neuhaus JM, Martelli GP (1999) Subcellular localization and in vivo identification of the putative movement protein of Olive latent virus 2. J Gen Virol 80:1103–1109

    CAS  PubMed  Google Scholar 

  • Griffing LR (2010) Networking in the endoplasmic reticulum. Biochem Soc Trans 38:747–753

    Article  CAS  PubMed  Google Scholar 

  • Guenoune-Gelbart D, Elbaum M, Sagi G, Levy A, Epel BL (2008) Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana. Mol Plant Microbe Interact 21:335–345

    Article  CAS  PubMed  Google Scholar 

  • Haley A, Hunter T, Kiberstis P, Zimmern D (1995) Multiple serine phosphorylation sites on the 30 kDa TMV cell-to-cell movement protein synthesized in tobacco protoplasts. Plant J 8:715–724

    Article  CAS  PubMed  Google Scholar 

  • Ham B-K, Lee T-H, You JS, Nam Y-W, Kim J-K, Paek K-H (1999) Isolation of a putative tobacco host factor interacting with Cucumber mosaic virus 2b protein by yeast two-hybrid screening. Mol Cells 9:548–555

    CAS  PubMed  Google Scholar 

  • Harries PA, Palanichelvam K, Yu W, Schoelz JE, Nelson RS (2009a) The Cauliflower mosaic virus protein P6 forms motile inclusions that traffic along actin microfilaments and stabilize microtubules. Plant Physiol 149:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Harries PA, Park JW, Sasaki N, Ballard KD, Maule AJ, Nelson RS (2009b) Differing requirements for actin and myosin by plant viruses for sustained intercellular movement. Proc Natl Acad Sci USA 106:17594–17599

    Article  CAS  PubMed  Google Scholar 

  • Haupt S, Cowan GH, Ziegler A, Roberts AG, Oparka KJ, Torrance L (2005) Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17:164–181

    Article  CAS  PubMed  Google Scholar 

  • Havelda Z, Maule AJ (2000) Complex spatial responses to Cucumber mosaic virus infection in susceptible Cucurbita pepo cotyledons. Plant Cell 12:1975–1985

    Article  CAS  PubMed  Google Scholar 

  • Haywood V, Kragler F, Lucas WJ (2002) Plasmodesmata: pathways for protein and ribonucleoprotein signaling. Plant Cell Supplement: S303–S325

  • Heinlein M (2002a) Plasmodesmata: dynamic regulation and role in macromolecular cell-to-cell signalling. Curr Opin Plant Biol 5:543–552

    Article  CAS  PubMed  Google Scholar 

  • Heinlein M (2002b) The spread of Tobacco mosaic virus infection: insights into the cellular mechanism of RNA transport. Cell Mol Life Sci 59:58–82

    Article  CAS  PubMed  Google Scholar 

  • Heinlein M (2005) Systemic RNA silencing. In: Oparka K (ed) Plasmodesmata, vol 18. Blackwell, Oxford, pp 212–240

    Chapter  Google Scholar 

  • Heinlein M (2006) TMV movement protein targets cell-cell channels in plants and prokaryotes: possible roles of tubulin- and FtsZ-based cytoskeletons. In F Baluska, D Volkmann, PW Barlow, eds, Cell-cell channels. Landes Bioscience, pp 176–182

  • Heinlein M, Epel BL (2004) Macromolecular transport and signaling through plasmodesmata. Int Rev Cytol 235:93–164

    Article  CAS  PubMed  Google Scholar 

  • Heinlein M, Epel BL, Padgett HS, Beachy RN (1995) Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270:1983–1985

    Article  CAS  PubMed  Google Scholar 

  • Heinlein M, Padgett HS, Gens JS, Pickard BG, Casper SJ, Epel BL, Beachy RN (1998a) Changing patterns of localization of the Tobacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection. Plant Cell 10:1107–1120

    Article  CAS  PubMed  Google Scholar 

  • Heinlein M, Wood MR, Thiel T, Beachy RN (1998b) Targeting and modification of prokaryotic cell-cell junctions by Tobacco mosaic virus cell-to-cell movement protein. Plant J 14:345–351

    Article  CAS  PubMed  Google Scholar 

  • Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O (2003) Transitivity-dependent and -independent cell-to-cell movement of RNA silencing. EMBO J 22:4523–4533

    Article  CAS  PubMed  Google Scholar 

  • Hirashima K, Watanabe Y (2001) Tobamovirus replicase coding region is involved in cell-to-cell movement. J Virol 75:8831–8836

    Article  CAS  PubMed  Google Scholar 

  • Hirashima K, Watanabe Y (2003) RNA helicase domain of tobamovirus replicase executes cell-to-cell movement possibly through collaboration with its nonconserved region. J Virol 77:12357–12362

    Article  CAS  PubMed  Google Scholar 

  • Hofius D, Maier AT, Dietrich C, Jungkunz I, Bornke F, Maiss E, Sonnewald U (2007) Capsid protein-mediated recruitment of host DnaJ-like proteins is required for Potato virus Y infection in tobacco plants. J Virol 81:11870–11880

    Article  CAS  PubMed  Google Scholar 

  • Hofmann C, Sambade A, Heinlein M (2007) Plasmodesmata and intercellular transport of viral RNA. Biochem Soc Trans 35:142–145

    Article  CAS  PubMed  Google Scholar 

  • Hofmann C, Niehl A, Sambade A, Steinmetz A, Heinlein M (2009) Inhibition of TMV movement by expression of an actin-binding protein. Plant Physiol 149:1810–1823

    Article  CAS  PubMed  Google Scholar 

  • Holdaway-Clarke TL, Walker NA, Hepler PK, Overall RL (2000) Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta 210:329–335

    Article  CAS  PubMed  Google Scholar 

  • Holmes FO (1934) A masked strain of Tobacco mosaic virus. Phytopathology 24:845–873

    Google Scholar 

  • Holt CA, Beachy RN (1991) In vivo complementation of infectious transcripts from mutant Tobacco mosaic virus cDNAs in transgenic plants. Virology 181:109–117

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Han Y, Howell SH (2000) Formation of surface tubules and fluorescent foci in Arabidopsis thaliana protoplasts expressing a fusion between the green fluorescent protein and the Cauliflower mosaic virus movement protein. Virology 271:58–64

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Jongejan L, Zheng H, Zhang L, Bol JF (2001a) Intracellular localization and movement phenotypes of Alfalfa mosaic virus movement protein mutants. Mol Plant Microbe Interact 14:1063–1074

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Andianov VM, Han Y, Howell SH (2001b) Identification of Arabidopsis proteins that interact with the Cauliflower mosaic virus (CaMV) movement protein. Plant Mol Biol 47:663–675

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694–1696

    Article  CAS  PubMed  Google Scholar 

  • Iglesias VA, Meins F Jr (2000) Movement of plant viruses is delayed in a β-1,3-glucanase-deficient mutant showing a reduced plasmodesmatal size exclusion limit and enhanced callose deposition. Plant J 21:157–166

    Article  CAS  PubMed  Google Scholar 

  • Ishiwatari Y, Fujiwara T, McFarland KC, Nemoto K, Hayashi H, Chino M, Lucas WJ (1998) Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata. Planta 205:12–22

    Article  CAS  PubMed  Google Scholar 

  • Itaya A, Woo YM, Masuta C, Bao Y, Nelson RS, Ding B (1998) Developmental regulation of intercellular protein trafficking through plasmodesmata in tobacco leaf epidermis. Plant Physiol 118:373–385

    Article  CAS  PubMed  Google Scholar 

  • Jackson AO, Lim HS, Bragg J, Ganesan U, Lee MY (2009) Hordeivirus replication, movement, and pathogenesis. Annu Rev Phytopathol 47:385–422

    Article  CAS  PubMed  Google Scholar 

  • Jimenez I, Lopez L, Alamillo JM, Valli A, Garcia JA (2006) Identification of a Plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Mol Plant Microbe Interact 19:350–358

    Article  CAS  PubMed  Google Scholar 

  • Jockusch H (1968) Two mutants of Tobacco mosaic virus temperature-sensitive in two different functions. Virology 35:94–101

    Article  CAS  PubMed  Google Scholar 

  • Ju HJ, Samuels TD, Wang YS, Blancaflor E, Payton M, Mitra R, Krishnamurthy K, Nelson RS, Verchot-Lubicz J (2005) The Potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. Plant Physiol 138:1877–1895

    Article  CAS  PubMed  Google Scholar 

  • Kaido M, Inoue Y, Takeda Y, Sugiyama K, Takeda A, Mori M, Tamai A, Meshi T, Okuno T, Mise K (2007) Downregulation of the NbNACa1 gene encoding a movement-protein-interacting protein reduces cell-to-cell movement of Brome mosaic virus in Nicotiana benthamiana. Mol Plant Microbe Interact 20:671–681

    Article  CAS  PubMed  Google Scholar 

  • Karpova OV, Ivanov KI, Rodionova P, Dorokhov YL, Atabekov JG (1997) Nontranslatability and dissimilar behavior in plants and protoplasts of viral RNA and movement protein complexes formed in vitro. Virology 230:11–21

    Article  CAS  PubMed  Google Scholar 

  • Kalinina NO, Rakitina DA, Solovyev AG, Schiemann J, Morozov SY (2002) RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. Virology 296:321–329

    Article  CAS  PubMed  Google Scholar 

  • Karpova OV, Rodionova NP, Ivanov KI, Kozlovsky SV, Dorokhov YL, Atabekov JG (1999) Phosphorylation of Tobacco mosaic virus movement protein abolishes its translation repressing ability. Virology 261:20–24

    Article  CAS  PubMed  Google Scholar 

  • Kasschau KD, Carrington JC (1998) A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:461–470

    Article  CAS  PubMed  Google Scholar 

  • Kasteel DTJ, Perbal M-C, Boyer J-C, Wellink J, Goldbach RW, Maule AJ, van Lent JWM (1996) The movement proteins of Cowpea mosaic virus and Cauliflower mosaic virus induce tubular structures in plant and insect cells. J Gen Virol 77:2857–2864

    Article  CAS  PubMed  Google Scholar 

  • Kawakami S, Padgett HS, Hosokawa D, Okada Y, Beachy RN, Watanabe Y (1999) Phosphorylation and/or presence of serine 37 in the movement protein of Tomato mosaic tobamovirus is essential for intracellular localization and stability in vivo. J Virol 73:6831–6840

    CAS  PubMed  Google Scholar 

  • Kawakami S, Hori K, Hosokawa D, Okada Y, Watanabe Y (2003) Defective tobamovirus movement protein lacking wild-type phosphorylation sites can be complemented by substitutions found in revertants. J Virol 77:1452–1461

    Article  CAS  PubMed  Google Scholar 

  • Kawakami S, Watanabe Y, Beachy RN (2004) Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci USA 101:6291–6296

    Article  CAS  PubMed  Google Scholar 

  • Kehr J, Buhtz A (2008) Long distance transport and movement of RNA through the phloem. J Exp Bot 59:85–92

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Kalinina NO, Andreev I, Ryobov EV, Fitzgerald AG, Taliansky ME, Paukaitis P (2004) The C-terminal 33 amino acids of the Cucumber mosaic virus 3a protein affect virus movement, RNA binding and inhibition of infection and translation. J Gen Virol 85:221–230

    Article  CAS  PubMed  Google Scholar 

  • Kim JY (2005) Regulation of short-distance transport of RNA and protein. Curr Opin Plant Biol 8:45–52

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, MacFarlane S, Kalinina NO, Rakitina DV, Ryabov EV, Gillespie T, Haupt S, Brown JW, Taliansky M (2007) Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci USA 104:11115–11120

    Article  CAS  PubMed  Google Scholar 

  • Kitajima EW, Lauritis JA, Swift H (1969) Fine structure of zinnial leaf tissues infected with Dahlia mosaic virus. Virology 39:240–249

    Article  CAS  PubMed  Google Scholar 

  • Kleinow T, Nischang M, Beck A, Kratzer U, Tanwir F, Preiss W, Kepp G, Jeske H (2009) Three C-terminal phosphorylation sites in the Abutilon mosaic virus movement protein affect symptom development and viral DNA accumulation. Virology 390:89–101

    Article  CAS  PubMed  Google Scholar 

  • Kormelink R, Storms M, Van Lent J, Peters D, Goldbach R (1994) Expression and subcellular location of the NSM protein of Tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200:56–65

    Article  CAS  PubMed  Google Scholar 

  • Kotlizky G, Katz A, van der Laak J, Boyko V, Lapidot M, Beachy RN, Heinlein M, Epel BL (2001) A dysfunctional movement protein of Tobacco mosaic virus interferes with targeting of wild type movement protein to microtubules. Mol Plant Microbe Interact 7:895–904

    Article  Google Scholar 

  • Kragler F, Monzer J, Shash K, Xoconoctle-Cazares B, Lucas WJ (1998) Cell-to-cell transport of proteins: requirement for unfolding and characterization of binding to a putative plasmodesmal receptor. Plant J 15:367–381

    Article  CAS  Google Scholar 

  • Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E (2003) MPB2C, a microtubule-associated plant protein binds to and interferes with cell-to-cell transport of Tobacco mosaic virus movement protein. Plant Physiol 132:1870–1883

    Article  CAS  PubMed  Google Scholar 

  • Krenz B, Windeisen V, Wege C, Jeske H, Kleinow T (2010) A plastid-targeted heat shock cognate 70 kDa protein interacts with the Abutilon mosaic virus movement protein. Virology 401:6–17

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy K, Heppler M, Mitra R, Blancaflor E, Payton M, Nelson RS, Verchot-Lubicz J (2003) The Potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement. Virology 309:135–151

    Article  CAS  PubMed  Google Scholar 

  • Kubota K, Tsuda S, Tamai A, Meshi T (2003) Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J Virol 77:11016–11026

    Article  CAS  PubMed  Google Scholar 

  • Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, Sano R, Nagasaka R, Tominaga R, Koshino-Kimura Y, Kato T, Sato S, Tabata S, Okada K, Wada T (2005) Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132:5387–5398

    Article  CAS  PubMed  Google Scholar 

  • Laporte C, Vetter G, Loudes AM, Robinson DG, Hillmer S, Stussi-Garaud C, Ritzenthaler C (2003) Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15:2058–2075

    Article  CAS  PubMed  Google Scholar 

  • Laval V, Chabannes M, Carriere M, Canut H, Barre A, Rouge P, Pont-Lezica R, Galaud J (1999) A family of Arabidopsis plasma membrane receptors presenting animal beta-integrin domains. Biochim Biophys Acta 1435:61–70

    Article  CAS  PubMed  Google Scholar 

  • Lawrence DM, Jackson AO (2001) Interactions of the TGB1 protein during cell-to-cell movement of Barley stripe mosaic virus. J Virol 75:8712–8723

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Taoka K, Yoo BC, Ben-Nissan G, Kim DJ, Lucas WJ (2005) Plasmodesmal-associated protein kinase in tobacco and Arabidopsis recognizes a subset of non-cell-autonomous proteins. Plant Cell 17:2817–2831

    Article  CAS  PubMed  Google Scholar 

  • Lee J-Y, Yoo B-C, Rojas MR, Gomez-Ospina N, Staehelin LA, Lucas WJ (2003) Selective trafficking of non-cell-autonomous proteins mediated by NtNCAPP1. Science 299:392–396

    Article  CAS  PubMed  Google Scholar 

  • Lekkerkerker A, Wellink J, Yuan P, van Lent J, Goldbach R, van Kammen AB (1996) Distinct functional domains in the Cowpea mosaic virus movement protein. J Virol 70:5658–5661

    CAS  PubMed  Google Scholar 

  • Leonard S, Plante D, Wittmann S, Daigneault N, Fortin MG, Laliberte JF (2000) Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol 74:7730–7737

    Article  CAS  PubMed  Google Scholar 

  • Leonard S, Viel C, Beauchemin C, Daigneault N, Fortin MG, Laliberte JF (2004) Interaction of VPg-Pro of Turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta. J Gen Virol 85:1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Levy A, Erlanger M, Rosenthal M, Epel BL (2007) A plasmodesmata-associated beta-1, 3-glucanase in Arabidopsis. Plant J 49:669–682

    Article  CAS  PubMed  Google Scholar 

  • Lew RR (1994) Regulation of electrical coupling between Arabidopsis root hairs. Planta 193:67–73

    Article  CAS  Google Scholar 

  • Lewandowski DJ, Adkins S (2005) The tubule-forming NSm protein from Tomato spotted wilt virus complements cell-to-cell and long-distance movement of Tobacco mosaic virus hybrids. Virology 342:26–37

    Article  CAS  PubMed  Google Scholar 

  • Lewis JD, Lazarowitz SG (2010) Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Natl Acad Sci USA 107:2491–2496

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Palukaitis P (1996) Comparison of the nucleic acid- and NTP-binding properties of the movement protein of Cucumber mosaic cucumovirus and Tobacco mosaic tobamovirus. Virology 216:71–79

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wu MY, Song HH, Hu X, Qiu BS (2005) Identification of a tobacco protein interacting with Tomato mosaic virus coat protein and facilitating long-distance movement of virus. Arch Virol 150:1993–2008

    Article  CAS  PubMed  Google Scholar 

  • Lim HS, Bragg JN, Ganesan U, Lawrence DM, Yu J, Isogai M, Hammond J, Jackson AO (2008) Triple gene block protein interactions involved in movement of Barley stripe mosaic virus. J Virol 82:4991–5006

    Article  CAS  PubMed  Google Scholar 

  • Lim HS, Bragg JN, Ganesan U, Ruzin S, Schichnes D, Lee MY, Vaira AM, Ryu KH, Hammond J, Jackson AO (2009) Subcellular localization of the Barley stripe mosaic virus triple gene block proteins. J Virol 83:9432–9448

    Article  CAS  PubMed  Google Scholar 

  • Lin B, Heaton LA (2001) An Arabidopsis thaliana protein interacts with a movement protein of Turnip crinkle virus in yeast cells and in vitro. J Gen Virol 82:1245–1251

    CAS  PubMed  Google Scholar 

  • Linstead PJ, Hills GJ, Plaskitt KA, Wilson IG, Harker CI, Maule AJ (1988) The subcellular location of the gene I product of Cauliflower mosaic virus is consistent with a function associated with virus spread. J Gen Virol 69:1809–1818

    Article  CAS  Google Scholar 

  • Liu J-Z, Blancaflor EB, Nelson RS (2005) The Tobacco mosaic virus 126-kilodalton protein, a constituent of the virus replication complex, alone or within the complex aligns with and traffics along microfilaments. Plant Physiol 138:1877–1895

    Article  CAS  Google Scholar 

  • Lough TJ, Shash K, Xoconostle-Cazares B, Hofstra KR, Beck DL, Balmori E, Forster RL, Lucas WJ (1998) Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Mol Plant Microbe Interact 11:801–814

    Article  CAS  Google Scholar 

  • Lough TJ, Netzler NE, Emerson SJ, Sutherland P, Carr F, Beck DL, Lucas WJ, Forster RL (2000) Cell-to-cell movement of potexviruses: evidence for a ribonucleoprotein complex involving the coat protein and first triple gene block protein. Mol Plant Microbe Interact 13:962–974

    Article  CAS  PubMed  Google Scholar 

  • Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221

    Article  CAS  PubMed  Google Scholar 

  • Lucas WJ (2006) Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344:169–184

    Article  CAS  PubMed  Google Scholar 

  • Lucas WJ, Lee JY (2004) Plasmodesmata as a supracellular control network in plants. Nat Rev Mol Cell Biol 5:712–726

    Article  CAS  PubMed  Google Scholar 

  • Lucas WJ, Bouche-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its RNA through plasmodesmata. Science 270:1980–1983

    Article  CAS  PubMed  Google Scholar 

  • Lucas WJ, Yoo B-C, Kragler F (2001) RNA as a long-distance information macromolecule in plants. Nat Rev Mol Cell Biol 2:849–857

    Article  CAS  PubMed  Google Scholar 

  • Lucas WJ, Ham BK, Kim JY (2009) Plasmodesmata - bridging the gap between neighboring plant cells. Trends Cell Biol 19:495–503

    Article  CAS  PubMed  Google Scholar 

  • Makarov VV, Rybakova EN, Efimov AV, Dobrov EN, Serebryakova MV, Solovyev AG, Yaminsky IV, Taliansky ME, Morozov SY, Kalinina NO (2009) Domain organization of the N-terminal portion of hordeivirus movement protein TGBp1. J Gen Virol 90:3022–3032

    Article  CAS  PubMed  Google Scholar 

  • Mariano AC, Andrade MO, Santos AA, Carolino SM, Oliveira ML, Baracat-Pereira MC, Brommonshenkel SH, Fontes EP (2004) Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein. Virology 318:24–31

    Article  CAS  PubMed  Google Scholar 

  • Más P, Beachy RN (1999) Replication of Tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement in intracellular distribution of viral RNA. J Cell Biol 147:945–958

    Article  PubMed  Google Scholar 

  • Matsushita Y, Hanazawa K, Yoshioka K, Oguchi T, Kawakami S, Watanabe Y, Nishiguchi M, Nyunoya H (2000) In vitro phosphorylation of the movement protein of Tomato mosaic tobamovirus by a cellular kinase. J Gen Virol 81:2095–2102

    CAS  PubMed  Google Scholar 

  • Matsushita Y, Deguchi M, Youda M, Nishiguchi M, Nyunoya H (2001) The Tomato mosaic tobamovirus movement protein interacts with a putative transcriptional coactivator KELP. Mol Cells 12:57–66

    CAS  PubMed  Google Scholar 

  • Matsushita M, Miyakawa O, Deguchi M, Nishiguchi M, Nyunoya H (2002) Cloning of a tobacco cDNA coding for a putative transcriptional coactivator MBF1 that interacts with the Tomato mosaic virus movement protein. J Exp Bot 53:1531–1532

    Article  CAS  PubMed  Google Scholar 

  • Matsushita Y, Ohshima M, Yoshioka K, Nishiguchi M, Nyunoya H (2003) The catalytic subunit of protein kinase CK2 phosphorylates in vitro the movement protein of Tomato mosaic virus. J Gen Virol 84:497–505

    Article  CAS  PubMed  Google Scholar 

  • McCauley M, Hepler PK (1992) Cortical ultrastructure of freeze-substituted protonemata of the moss Funaria hygrometrica. Protoplasma 169:168–178

    Article  Google Scholar 

  • McGarry RC, Barron YD, Carvalho MF, Hill JE, Gold D, Cheung E, Kraus WL, Lazarowitz SG (2003) A novel Arabidopsis acetyltransferase interacts with the geminivirus movement protein NSP. Plant Cell 15:1605–1618

    Article  CAS  PubMed  Google Scholar 

  • McLean BG, Zupan J, Zambryski PC (1995) Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco plants. Plant Cell 7:2101–2114

    Article  CAS  PubMed  Google Scholar 

  • Meshi T, Watanabe Y, Saito T, Sugimoto A, Maeda T, Okada Y (1987) Function of the 30 kd protein of Tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO J 6:2557–2563

    CAS  PubMed  Google Scholar 

  • Modena NA, Zelada AM, Conte F, Mentaberry A (2008) Phosphorylation of the TGBp1 movement protein of Potato virus X by a Nicotiana tabacum CK2-like activity. Virus Res 137:16–23

    Article  CAS  PubMed  Google Scholar 

  • Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–875

    Article  CAS  PubMed  Google Scholar 

  • Moore P, Fenczik CA, Deom CM, Beachy RN (1992) Developmental changes in plasmodesmata in transgenic tobacco expressing the movement protein of Tobacco mosaic virus. Protoplasma 170:115–127

    Article  Google Scholar 

  • Morozov SY, Solovyev AG (2003) Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84:1351–1366

    Article  CAS  PubMed  Google Scholar 

  • Morozov SY, Fedorkin ON, Juttner G, Schiemann J, Baulcombe DC, Atabekov JG (1997) Complementation of Potato virus X mutant mediated by bombardment of plant tissues with cloned viral movement protein genes. J Gen Virol 78:2077–2081

    CAS  PubMed  Google Scholar 

  • Nagano H, Mise K, Furosawa I, Okuno T (2001) Conversion in the requirement of coat protein in cell-to-cell movement mediated by the cucumber mosaic virus movement protein. J Virol 75:8045–8053

    Article  CAS  PubMed  Google Scholar 

  • Nagpal P, Quatrano RS (1999) Isolation and characterization of a cDNA clone from Arabidopsis thaliana with partial sequence similarity to integrins. Gene 230:33–40

    Article  CAS  PubMed  Google Scholar 

  • Nishiguchi M, Motoyoshi F, Oshima N (1978) Behaviour of a temperature-sensitive strain of Tobacco mosaic virus in tomato leaves and protoplasts. J Gen Virol 39:53–61

    Article  Google Scholar 

  • Noris E, Vaira AM, Caciagli P, Masenga V, Gronenborn B, Accotto GP (1998) Amino acids in the capsid protein of Tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J Virol 72:10050–10057

    CAS  PubMed  Google Scholar 

  • Ohno T, Takamatsu N, Meshi T, Okada Y, Nishigushi M, Kiho Y (1983) Single amino acid substitution in 30 k protein of TMV defective in virus transport function. Virology 131:255–258

    Article  CAS  PubMed  Google Scholar 

  • Oparka KJ (1994) Plasmolysis: new insights into an old process. New Phytol 126:571–591

    Article  CAS  Google Scholar 

  • Oparka KJ, Prior DAM, Santa Cruz S, Padgett HS, Beachy RN (1997) Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of Tobacco mosaic virus. Plant J 12:781–789

    Article  CAS  PubMed  Google Scholar 

  • Oparka KJ, Roberts AG, Boevink P, Santa Cruz S, Roberts I, Pradel KS, Imlau A, Kotlizky G, Sauer N, Epel B (1999) Simple, but not branched, plasmodesmata allow the nonspecific trafficking of proteins in developing tobacco leaves. Cell 97:743–754

    Article  CAS  PubMed  Google Scholar 

  • Ouko M, Sambade A, Brandner K, Niehl A, Peña E, Heinlein M, Nick P (2010) Tobacco mutants with reduced microtubule dynamics are less susceptible to TMV. Plant J 62:829–839

    Article  CAS  PubMed  Google Scholar 

  • Padgett HS, Epel BL, Kahn TW, Heinlein M, Watanabe Y, Beachy RN (1996) Distribution of tobamovirus movement protein in infected cells and implications for cell-to-cell spread of infection. Plant J 10:1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Padidam M, Beachy RN, Fauquet CM (1995) Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J Gen Virol 76:25–35

    Article  CAS  PubMed  Google Scholar 

  • Perbal M-C, Haughn G, Saedler H, Schwarz-Sommer Z (1996) Non-autonomous function of Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122:3433–3441

    CAS  PubMed  Google Scholar 

  • Perbal M-C, Thomas CL, Maule AJ (1993) Cauliflower mosaic virus gene I product (P1) forms tubular structures which extend from the surface of infected protoplasts. Virology 195:281–285

    Article  CAS  PubMed  Google Scholar 

  • Pont-Lezica RF, McNally JG, Pickard BG (1993) Wall-to-membrane linkers in onion epidermis: some hypotheses. Plant Cell Environ 16:111–123

    Article  CAS  Google Scholar 

  • Pouwels J, Van Der Krogt GN, Van Lent J, Bisseling T, Wellink J (2002) The cytoskeleton and the secretory pathway are not involved in targeting the Cowpea mosaic virus movement protein to the cell periphery. Virology 297:48–56

    Article  CAS  PubMed  Google Scholar 

  • Pouwels J, van der Velden T, Willemse J, Borst JW, van Lent J, Bisseling T, Wellink J (2004) Studies on the origin and structure of tubules made by the movement protein of Cowpea mosaic virus. J Gen Virol 85:3787–3796

    Article  CAS  PubMed  Google Scholar 

  • Prokhnevsky AI, Peremyslov VV, Dolja VV (2005) Actin cytoskeleton is involved in targeting of a viral Hsp70 homolog to the cell periphery. J Virol 79:14421–14428

    Article  CAS  PubMed  Google Scholar 

  • Radford JE, White RG (1998) Localization of a myosin-like protein to plasmodesmata. Plant J 14:743–750

    Article  CAS  PubMed  Google Scholar 

  • Raffaele S, Bayer E, Lafarge D, Cluzet S, German Retana S, Boubekeur T, Leborgne-Castel N, Carde JP, Lherminier J, Noirot E, Satiat-Jeunemaitre B, Laroche-Traineau J, Moreau P, Ott T, Maule AJ, Reymond P, Simon-Plas F, Farmer EE, Bessoule JJ, Mongrand S (2009) Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs Potato virus X movement. Plant Cell 21:1541–1555

    Article  CAS  PubMed  Google Scholar 

  • Rao AL, Cooper B, Deom CM (1998) Defective movement of viruses in the family bromoviridae is differentially complemented in Nicotiana benthamiana expressing tobamovirus or dianthovirus movement proteins. Phytopathology 88:666–672

    Article  CAS  PubMed  Google Scholar 

  • Reichel C, Beachy RN (2000) Degradation of the Tobacco mosaic virus movement protein by the 26 S proteasome. J Virol 74:3330–3337

    Article  CAS  PubMed  Google Scholar 

  • Reichelt S, Knight AE, Hodge TP, Baluska F, Samaj J, Volkmann D, Kendrick-Jones J (1999) Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant J 19:555–569

    Article  CAS  PubMed  Google Scholar 

  • Rhee Y, Tzfira T, Chen MH, Waigmann E, Citovsky V (2000) Cell-to-cell movement of Tobacco mosaic virus: enigmas and explanations. Mol Plant Pathol 1:33–39

    Article  CAS  PubMed  Google Scholar 

  • Rigden JE, Krake LR, Rezaian MA, Dry IB (1994) ORF C4 of Tomato leaf curl geminivirus is a determinant of symptom severity. Virology 204:847–850

    Article  CAS  PubMed  Google Scholar 

  • Ritzenthaler C, Schmidt A-C, Michler P, Stussi-Garaud C, Pinck L (1995) Grapevine fanleaf nepovirus putative movement protein is involved in tubule formation in vivo. Mol Plant Microbe Interact 8:379–387

    Article  CAS  Google Scholar 

  • Robaglia C, Caranta C (2006) Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11:40–45

    Article  CAS  PubMed  Google Scholar 

  • Roberts IM, Wang D, Findlay K, Maule AJ (1998) Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (CIs) show that the CI protein acts transiently in aiding virus movement. Virology 245:173–181

    Article  CAS  PubMed  Google Scholar 

  • Roberts IM, Wang D, Thomas CL, Maule AJ (2003) Seed transmission of Pea seed borne mosaic virus in pea exploits novel symplastic pathways and is, in part, dependent upon chance. Protoplasma 222:31–43

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Cerezo E, Findlay K, Shaw JG, Lomonossoff GP, Qiu SG, Linstead P, Shanks M, Risco C (1997) The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology 236:296–306

    Article  PubMed  Google Scholar 

  • Rojas MR, Hagen C, Lucas WJ, Gilbertson RL (2005) Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394

    Article  CAS  PubMed  Google Scholar 

  • Rojas MR, Jiang H, Salati R, Xoconostle-Cazares B, Sudarshana MR, Lucas WJ, Gilbertson RL (2001) Functional analysis of proteins involved in movement of the monopartite begomovirus, Tomato yellow leaf curl virus. Virology 291:110–125

    Article  CAS  PubMed  Google Scholar 

  • Rojas MR, Zerbini M, Allison RF, Gilbertson RL, Lucas WJ (1997) Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237:283–295

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cazares B, Kragler F (2004) The plasmodesmatal transport pathway for homeotic proteins, silencing signals and viruses. Curr Opin Plant Biol 7:641–650

    Article  CAS  PubMed  Google Scholar 

  • Ruggenthaler P, Fichtenbauer D, Krasensky J, Jonak C, Waigmann E (2009) Microtubule-associated protein AtMPB2C plays a role in organization of cortical microtubules, stomata patterning, and tobamovirus infectivity. Plant Physiol 149:1354–1365

    Article  CAS  PubMed  Google Scholar 

  • Runions J, Brach T, Kuhner S, Hawes C (2006) Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane. J Exp Bot 57:43–50

    Article  CAS  PubMed  Google Scholar 

  • Sagi G, Katz A, Guenoune-Gelbart D, Epel BL (2005) Class 1 reversibly glycosylated polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the Golgi apparatus. Plant Cell 17:1788–1800

    Article  CAS  PubMed  Google Scholar 

  • Sambade A, Brandner K, Hofmann C, Seemanpillai M, Mutterer J, Heinlein M (2008) Transport of TMV movement protein particles associated with the targeting of RNA to plasmodesmata. Traffic 9:2073–2088

    Article  CAS  PubMed  Google Scholar 

  • Sambade A, Heinlein M (2009) Approaching the cellular mechanism that supports the intercellular spread of Tobacco mosaic virus. Plant Signal Behav 4:35–38

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Navarro JA, Herranz MC, Pallas V (2006) Cell-to-cell movement of Alfalfa mosaic virus can be mediated by the movement proteins of Ilar-, bromo-, cucumo-, tobamo- and comoviruses and does not require virion formation. Virology 346:66–73

    Article  CAS  PubMed  Google Scholar 

  • Sanderfoot AA, Ingham DJ, Lazarowitz SG (1996) A viral movement protein as a nuclear shuttle. The geminivirus BR1 movement protein contains domains essential for interaction with BL1 and nuclear localization. Plant Physiol 110:23–33

    Article  CAS  PubMed  Google Scholar 

  • Santa Cruz S, Roberts AG, Prior DAM, Chapman S, Oparka KJ (1998) Cell-to-cell and phloem-mediated transport of Potato virus X: the role of virions. Plant Cell 10:495–510

    Article  Google Scholar 

  • Sasaki N, Kaido M, Okuno T, Mise K (2005) Coat protein-independent cell-to-cell movement of bromoviruses expressing Brome mosaic virus movement protein with an adaptation-related amino acid change in the central region. Arch Virol 150:1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Schaad MC, Anderberg RJ, Carrington JC (2000) Strain-specific interaction of the Tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology 273:300–306

    Article  CAS  PubMed  Google Scholar 

  • Seemanpillai M, Elamawi R, Ritzenthaler C, Heinlein M (2006) Challenging the role of microtubules in Tobacco mosaic virus movement by drug treatments is disputable. J Virol 80:6712–6715

    Article  CAS  PubMed  Google Scholar 

  • Seksek O, Biwersi J, Verkman AS (1997) Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol 138:131–142

    Article  CAS  PubMed  Google Scholar 

  • Selth LA, Dogra SC, Rasheed MS, Randles JW, Rezaian MA (2006) Identification and characterization of a host reversibly glycosylated peptide that interacts with the Tomato leaf curl virus V1 protein. Plant Mol Biol 61:297–310

    Article  CAS  PubMed  Google Scholar 

  • Senchou V, Weide R, Carrasco A, Bouyssou H, Pont-Lezica R, Govers F, Canut H (2004) High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif. Cell Mol Life Sci 61:502–509

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Yoshii A, Sakurai K, Hamada K, Yamaji Y, Suzuki M, Namba S, Hibi T (2009) Identification of a novel tobacco DnaJ-like protein that interacts with the movement protein of Tobacco mosaic virus. Arch Virol 154:959–967

    Article  CAS  PubMed  Google Scholar 

  • Silhavy D, Burgyan J (2004) Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci 9:76–83

    Article  CAS  PubMed  Google Scholar 

  • Sit TL, AbouHaidir MG (1993) Infectious RNA transcripts derived from cloned cDNA of Papaya mosaic virus: Effect of mutations to the capsid and polymerase proteins. J Gen Virol 74:1133–1140

    Article  CAS  PubMed  Google Scholar 

  • Soellick TR, Uhrig JF, Bucher GL, Kellmann JW, Schreier PH (2000) The movement protein NSm of Tomato spotted wilt tospovirus: RNA binding, interaction with TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci USA 97:2373–2378

    Article  CAS  PubMed  Google Scholar 

  • Sokolova M, Prufer D, Tacke E, Rohde W (1997) The Potato leafroll virus 17 k movement protein is phosphorylated by a membrane-associated protein kinase from potato with biochemical features of protein kinase C. FEBS Lett 400:201–205

    Article  CAS  PubMed  Google Scholar 

  • Solovyev AG, Stroganova TA, AAj Z, Fedorkin ON, Schiemann J, Morozov SY (2000) Subcellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2. Virology 269:113–127

    Article  CAS  PubMed  Google Scholar 

  • Sparkes I, Runions J, Hawes C, Griffing L (2009) Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves. Plant Cell 21:3937–3949

    Article  CAS  PubMed  Google Scholar 

  • Storms MMH, Kormelink R, Peters D, van Lent JWM, Goldbach RW (1995) The nonstructural NSm protein of Tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214:485–493

    Article  CAS  PubMed  Google Scholar 

  • Su S, Liu Z, Chen C, Zhang Y, Wang X, Zhu L, Miao L, Wang XC, Yuan M (2010) Cucumber mosaic virus movement protein severs actin filaments to increase the plasmodesmal size exclusion limit in tobacco. Plant Cell 22:1373–1387

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Qian H, Xu XD, Han Y, Yen LF, Sun DY (2000) Integrin-like proteins in the pollen tube: detection, localization and function. Plant Cell Physiol 41:1136–1142

    Article  CAS  PubMed  Google Scholar 

  • Szécsi J, Ding XS, Lim CO, Bendahmane M, Cho MJ, Nelson RS, Beachy RN (1999) Development of Tobacco mosaic virus infection sites in Nicotiana benthamiana. Mol Plant Microbe Interact 2:143–152

    Article  Google Scholar 

  • Tagami Y, Watanabe Y (2007) Effects of brefeldin A on the localization of tobamovirus movement protein and cell-to-cell movement of the virus. Virology 361:133–140

    Article  CAS  PubMed  Google Scholar 

  • Tagami Y, Inaba N, Kutsuna N, Kurihara Y, Watanabe Y (2007) Specific enrichment of miRNAs in Arabidopsis thaliana infected with Tobacco mosaic virus. DNA Res 14:227–233

    Article  CAS  PubMed  Google Scholar 

  • Tamai A, Kubota K, Nagano H, Yoshii M, Ishikawa M, Mise K, Meshi T (2003) Cucumovirus- and bromovirus-encoded movement functions potentiate cell-to-cell movement of tobamo- and potexviruses. Virology 315:56–67

    Article  CAS  PubMed  Google Scholar 

  • Taoka K, Ham BK, Xoconostle-Cazares B, Rojas MR, Lucas WJ (2007) Reciprocal phosphorylation and glycosylation recognition motifs control NCAPP1 interaction with pumpkin phloem proteins and their cell-to-cell movement. Plant Cell 19:1866–1884

    Article  CAS  PubMed  Google Scholar 

  • Thomas CL, Maule AJ (1995) Identification of structural domains within the Cauliflower mosaic virus movement protein by scanning deletion mutagenesis and epitope tagging. Plant Cell 7:561–572

    Article  CAS  PubMed  Google Scholar 

  • Thomas CL, Bayer EM, Ritzenthaler C, Fernandez-Calvino L, Maule AJ (2008) Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biol 6:e7

    Article  PubMed  CAS  Google Scholar 

  • Tilsner J, Cowan GH, Roberts AG, Chapman SN, Ziegler A, Savenkov E, Torrance L (2010) Plasmodesmal targeting and intercellular movement of Potato mop-top pomovirus is mediated by a membrane anchored tyrosine-based motif on the lumenal side of the endoplasmic reticulum and the C-terminal transmembrane domain in the TGB3 movement protein. Virology 402:41–51

    Article  CAS  PubMed  Google Scholar 

  • Tomenius K, Clapham D, Meshi T (1987) Localization by immunogold cytochemistry of the virus-coded 30 K protein in plasmodesmata of leaves infected with Tobacco mosaic virus. Virology 160:363–371

    Article  CAS  PubMed  Google Scholar 

  • Trutnyeva K, Bachmaier R, Waigmann E (2005) Mimicking carboxyterminal phosphorylation differentially effects subcellular distribution and cell-to-cell movement of Tobacco mosaic virus movement protein. Virology 332:563–577

    Article  CAS  PubMed  Google Scholar 

  • Tucker EB (1990) Calcium-loaded 1, 2-bis(2-aminophenoxy)ethane-N, N, N', N'-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea. Planta 182:34–38

    Article  CAS  Google Scholar 

  • Tucker EB (1993) Azide treatment enhances cell-to-cell diffusion in staminal hairs of Setcreasea purpurea. Protoplasma 174:45–49

    Article  CAS  Google Scholar 

  • Tucker EB, Boss WF (1996) Mastoparan induced intracellular Ca2+ fluxes may regulate cell-to-cell communication in plants. Plant Physiol 111:459–467

    CAS  PubMed  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2006) The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol Biol Evol 23:1324–1338

    Article  CAS  PubMed  Google Scholar 

  • Tyulkina LG, Karger EM, Sheveleva AA, Atabekov JG (2010) Binding of monoclonal antibodies to the movement protein (MP) of Tobacco mosaic virus: influence of subcellular MP localization and phosphorylation. J Gen Virol 91:1621–1628

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Rhee Y, Chen M-H, Kunik T, Citovsky V (2000) Nucleic acid transport in plant-microbe interactions: the molecules that walk through the walls. Annu Rev Microbiol 54:187–219

    Article  CAS  PubMed  Google Scholar 

  • Ueda H, Yokota E, Kutsuna N, Shimada T, Tamura K, Shimmen T, Hasezawa S, Dolja VV, Hara-Nishimura I (2010) Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc Natl Acad Sci USA 107:6894–6899

    Article  CAS  PubMed  Google Scholar 

  • van Bargen S, Salchert K, Paape M, Piechulla B, Kellmann J-W (2001) Interactions between Tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin, kinesin, and DNAJ-like chaperones. Plant Physiol Biochem 39:1083–1093

    Article  Google Scholar 

  • van der Wel N (2000) Interaction between the Alfalfa mosaic virus movement protein and plasmodesmata. PhD. thesis Agricultural University, Wageningen, The Netherlands

    Google Scholar 

  • van der Wel NN, Goldbach R, van Lent J (1998) The movement protein and coat protein of Alfalfa mosaic virus accumulate in structurally modified plasmodesmata. Virology 244:322–329

    Article  PubMed  Google Scholar 

  • van Lent J, Storms M, van der Meer F, Wellink J, Goldbach R (1991) Tubular structures involved in movement of Cowpea mosaic virus are also formed in infected cowpea protoplasts. J Gen Virol 72:2615–2623

    Article  PubMed  Google Scholar 

  • Verchot-Lubicz J (2005) A new cell-to-cell transport model for potexviruses. Mol Plant Microbe Interact 18:283–290

    Article  CAS  PubMed  Google Scholar 

  • Verchot-Lubicz J, Ye CM, Bamunusinghe D (2007) Molecular biology of potexviruses: recent advances. J Gen Virol 88:1643–1655

    Article  CAS  PubMed  Google Scholar 

  • Vogel F, Hofius D, Sonnewald U (2007) Intracellular trafficking of Potato leafroll virus movement protein in transgenic Arabidopsis. Traffic 8:1205–1214

    Article  CAS  PubMed  Google Scholar 

  • Vogler H, Akbergenov R, Shivaprasad PV, Dang V, Fasler M, Kwon MO, Zhanybekova S, Hohn T, Heinlein M (2007) Modification of small RNAs associated with suppression of RNA silencing by tobamovirus replicase protein. J Virol 81:10379–10388

    Article  CAS  PubMed  Google Scholar 

  • Vogler H, Kwon MO, Dang V, Sambade A, Fasler M, Ashby J, Heinlein M (2008) Tobacco mosaic virus movement protein enhances the spread of RNA silencing. PLoS Pathog 4:e1000038

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O, Lederer C, Baulcombe DC (2000) A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103:157–167

    Article  CAS  PubMed  Google Scholar 

  • Waigmann E, Zambryski P (1995) Tobacco mosaic virus movement protein-mediated protein transport between trichome cells. Plant Cell 7:2069–2079

    Article  CAS  PubMed  Google Scholar 

  • Waigmann E, Lucas W, Citovsky V, Zambryski P (1994) Direct functional assay for Tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci USA 91:1433–1437

    Article  CAS  PubMed  Google Scholar 

  • Waigmann E, Chen M-H, Bachmeier R, Ghoshroy S, Citovsky V (2000) Regulation of plasmodesmal transport by phosphorylation of Tobacco mosaic virus cell-to-cell movement protein. EMBO J 19:4875–4884

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Emori Y, ooshika I, Meshi T, Ohno T, Okada Y (1984) Synthesis of TMV-specific RNAs and proteins at the early stage of infection in tobacoo protoplasts: transient expression of 30 k protein and its mRNA. Virology 133:18–24

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Meshi T, Okada Y (1992) In vivo phosphorylation of the 30-kDa protein of Tobacco mosaic virus. FEBS Lett 313:181–184

    Article  CAS  PubMed  Google Scholar 

  • Wei T, Zhang C, Hong J, Xiong R, Kasschau KD, Zhou X, Carrington JC, Wang (2010) Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog 6: e1000962

  • Wellink J, van Lent JW, Verver J, Sijen T, Goldbach RW, van Kammen A (1993) The Cowpea mosaic virus M RNA-encoded 48-kilodalton protein is responsible for induction of tubular structures in protoplasts. J Virol 67:3660–3664

    CAS  PubMed  Google Scholar 

  • White RG, Badelt K, Overall RL, Vesk M (1994) Actin associated with plasmodesmata. Protoplasma 180:169–184

    Article  CAS  Google Scholar 

  • Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis plants. Plant J 33:271–283

    Article  CAS  PubMed  Google Scholar 

  • Wieczorek A, Sanfaçon H (1993) Characterization and subcellular location of Tomato rigspot nepovirus putative movement protein. Virology 194:734–742

    Article  CAS  PubMed  Google Scholar 

  • Winter N, Kollwig G, Zhang S, Kragler F (2007) MPB2C, a microtubule-associated protein, regulates non-cell-autonomy of the homeodomain protein KNOTTED1. Plant Cell 19:3001–3018

    Article  CAS  PubMed  Google Scholar 

  • Wittmann S, Chatel H, Fortin MG, Laliberte JF (1997) Interaction of the viral protein genome linked of Turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234:84–92

    Article  CAS  PubMed  Google Scholar 

  • Wolf S, Deom CM, Beachy RN, Lucas WJ (1989) Movement protein of Tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246:377–379

    Article  CAS  PubMed  Google Scholar 

  • Wright KM, Wood NT, Roberts AG, Chapman S, Boevink P, Mackenzie KM, Oparka KJ (2007) Targeting of TMV movement protein to plasmodesmata requires the actin/ER network; evidence from FRAP. Traffic 8:21–31

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Weigel D, Wigge PA (2002) Signaling in plants by intercellular RNA and protein movement. Genes Dev 16:151–158

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Dinneny JR, Crawford KM, Rhee Y, Citovsky V, Zambryski PC, Weigel D (2003) Modes of intercellular transcription factor movement in the Arabidopsis apex. Development 130:3735–3745

    Article  CAS  PubMed  Google Scholar 

  • Yaholom A, Lando R, Katz A, Epel BL (1998) A calcium-dependent protein kinase is associated with maize mesocotyl plasmodesmata. J Plant Physiol 153:354–362

    Google Scholar 

  • Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM, Lough TJ, Lucas WJ (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka K, Matsushita Y, Kasahara M, Konagaya K, Nyunoya H (2004) Interaction of Tomato mosaic virus movement protein with tobacco RIO kinase. Mol Cells 17:223–229

    CAS  PubMed  Google Scholar 

  • Zimmern D (1983) An extended secondary structure model for the TMV assembly origin, and its correlation with protection studies and an assembly defective mutant. EMBO J 2:1901–1907

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AN was supported by HFSPO Research Program Grant 22/2006. We thank Eduardo Peña for providing images of virus infection shown in Fig. 1.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Heinlein.

Additional information

Handling Editor: Alexander Schulz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niehl, A., Heinlein, M. Cellular pathways for viral transport through plasmodesmata. Protoplasma 248, 75–99 (2011). https://doi.org/10.1007/s00709-010-0246-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0246-1

Keywords

Navigation